Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss
详细信息    查看全文
  • 作者:Andrew J. Kolarik ; Brian C. J. Moore…
  • 关键词:Distance perception ; Blindness ; Hearing loss ; Sound level ; Compensatory plasticity
  • 刊名:Attention, Perception, & Psychophysics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:78
  • 期:2
  • 页码:373-395
  • 全文大小:754 KB
  • 参考文献:Ahveninen, J., Huang, S., Nummenmaa, A., Belliveau, J. W., Hung, A.-Y., Jääskeläinen, I. P., & Raij, T. (2013). Evidence for distinct human auditory cortex regions for sound location versus identity processing. Nature Communications, 4, 2585.PubMedCentral PubMed CrossRef
    Ahveninen, J., Jääskeläinen, I. P., Raij, T., Bonmassar, G., Devore, S., Hämäläinen, M., & Belliveau, J. W. (2006). Task-modulated “what” and “where” pathways in human auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 103, 14608–14613.PubMedCentral PubMed CrossRef
    Akeroyd, M. A. (2010). The effect of hearing-aid compression on judgments of relative distance. The Journal of the Acoustical Society of America, 127, 9–12.PubMedCentral PubMed CrossRef
    Akeroyd, M. A., Gatehouse, S., & Blaschke, J. (2007). The detection of differences in the cues to distance by elderly hearing-impaired listeners. The Journal of the Acoustical Society of America, 121, 1077–1089.PubMedCentral PubMed CrossRef
    Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.PubMed CrossRef
    Alais, D., & Carlile, S. (2005). Synchronizing to real events: Subjective audiovisual alignment scales with perceived auditory depth and speed of sound. Proceedings of the National Academy of Sciences of the United States of America, 102, 2244–2247.PubMedCentral PubMed CrossRef
    Altmann, C. F., Ono, K., Callan, A., Matsuhashi, M., Mima, T., & Fukuyama, H. (2013). Environmental reverberation affects processing of sound intensity in right temporal cortex. European Journal of Neuroscience, 38, 3210–3220.PubMed CrossRef
    Anderson, P. W., & Zahorik, P. (2014). Auditory/visual distance estimation: Accuracy and variability. Frontiers in Psychology, 5, 1097.PubMedCentral PubMed CrossRef
    Ashmead, D. H., Clifton, R. K., & Perris, E. E. (1987). Precision of auditory localization in human infants. Developmental Psychology, 23, 641–647.CrossRef
    Ashmead, D. H., Davis, D. L., & Northington, A. (1995). Contribution of listeners' approaching motion to auditory distance perception. Journal of Experimental Psychology: Human Perception and Performance, 21, 239–256.PubMed
    Ashmead, D. H., LeRoy, D., & Odom, R. D. (1990). Perception of the relative distances of nearby sound sources. Attention and Psychophysics, 47, 326–331.CrossRef
    Ashmead, D. H., Wall, R. S., Eaton, S. B., Ebinger, K. A., Snook-Hill, M., Guth, D. A., & Yang, X. (1998). Echolocation reconsidered: Using spatial variations in the ambient sound field to guide locomotion. Journal of Visual Impairment and Blindness, 92, 615–632.
    Aytekin, M., Moss, C. F., & Simon, J. Z. (2008). A sensorimotor approach to sound localization. Neural Computation, 20, 603–635.PubMed CrossRef
    Bavelier, D., Dye, M. W., & Hauser, P. C. (2006). Do deaf individuals see better? Trends in Cognitive Sciences, 10, 512–518.PubMedCentral PubMed CrossRef
    Blauert, J. (1997). Spatial hearing: The psychophysics of human sound localization. Cambridge, MA: MIT.
    Bronkhorst, A. W. (2015). The cocktail-party problem revisited: Early processing and selection of multi-talker speech. Attention, Perception, and Psychophysics, 77, 1465–1487.CrossRef
    Bronkhorst, A. W., & Houtgast, T. (1999). Auditory distance perception in rooms. Nature, 397, 517–520.PubMed CrossRef
    Brungart, D. S. (1999). Auditory localization of nearby sources III. Stimulus effects. The Journal of the Acoustical Society of America, 106, 3589–3602.PubMed CrossRef
    Brungart, D. S., Durlach, N. I., & Rabinowitz, W. M. (1999). Auditory localization of nearby sources II. Localization of a broadband source. The Journal of the Acoustical Society of America, 106, 1956–1968.PubMed CrossRef
    Brungart, D. S., & Rabinowitz, W. M. (1999). Auditory localization of nearby sources. Head-related transfer functions. The Journal of the Acoustical Society of America, 106, 1465–1479.PubMed CrossRef
    Brungart, D. S., & Scott, K. R. (2001). The effects of production and presentation level on the auditory distance perception of speech. The Journal of the Acoustical Society of America, 110, 425–440.PubMed CrossRef
    Bull, D., Eilers, R. E., & Oller, D. K. (1984). Infants’ discrimination of intensity variation in multisyllabic stimuli. The Journal of the Acoustical Society of America, 76, 13–17.PubMed CrossRef
    Butler, R. A., Levy, E. T., & Neff, W. D. (1980). Apparent distance of sounds recorded in echoic and anechoic chambers. Journal of Experimental Psychology: Human Perception and Performance, 6, 745–750.PubMed
    Calamia, P. T., & Hixson, E. L. (1997). Measurement of the head‐related transfer function at close range. The Journal of the Acoustical Society of America, 102, 3117.CrossRef
    Calcagno, E. R., Abregú, E. L., Eguía, M. C., & Vergara, R. (2012). The role of vision in auditory distance perception. Perception, 41, 175–192.PubMed CrossRef
    Canzoneri, E., Magosso, E., & Serino, A. (2012). Dynamic sounds capture the boundaries of peripersonal space representation in humans. PloS One, 7, e44306.PubMedCentral PubMed CrossRef
    Cappe, C., Thelen, A., Romei, V., Thut, G., & Murray, M. M. (2012). Looming signals reveal synergistic principles of multisensory integration. The Journal of Neuroscience, 32, 1171–1182.PubMed CrossRef
    Catic, J., Santurette, S., Buchholz, J. M., Gran, F., & Dau, T. (2013). The effect of interaural-level-difference fluctuations on the externalization of sound. The Journal of the Acoustical Society of America, 134, 1232–1241.PubMed CrossRef
    Chan, C. C. H., Wong, A. W. K., Ting, K. H., Whitfield‐Gabrieli, S., He, J., & Lee, T. (2012). Cross auditory‐spatial learning in early‐blind individuals. Human Brain Mapping, 33, 2714–2727.PubMed CrossRef
    Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and two ears. The Journal of the Acoustical Society of America, 25, 975–979.CrossRef
    Cheyne, H. A., Kalgaonkar, K., Clements, M., & Zurek, P. (2009). Talker-to-listener distance effects on speech production and perception. The Journal of the Acoustical Society of America, 126, 2052–2060.PubMed CrossRef
    Clifton, R. K., Perris, E. E., & Bullinger, A. (1991). Infants' perception of auditory space. Developmental Psychology, 27, 187–197.CrossRef
    Cochran, P., Throop, J., & Simpson, W. (1968). Estimation of distance of a source of sound. American Journal of Psychology, 81, 198–206.PubMed CrossRef
    Coleman, P. D. (1962). Failure to localize the source distance of an unfamiliar sound. The Journal of the Acoustical Society of America, 34, 345–346.CrossRef
    Coleman, P. D. (1963). An analysis of cues to auditory depth perception in free space. Psychological Bulletin, 60, 302–315.PubMed CrossRef
    Coleman, P. D. (1968). Dual role of frequency spectrum in determination of auditory distance. Journal of the Acoustical Society of America, 44, 631–632.PubMed CrossRef
    Collignon, O., Voss, P., Lassonde, M., & Lepore, F. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, 192, 343–358.PubMed CrossRef
    Da Silva, J. A. (1985). Scales for perceived egocentric distance in a large open field: Comparison of three psychophysical methods. The American Journal of Psychology, 98, 119–144.PubMed CrossRef
    De Coensel, B., Nilsson, M. E., Brown, A., & Botteldooren, D. (2012). Dwelling insulation as prior information in auditory distance perception of moving trains. Paper presented at the 9th European Conference on Noise Control (Euronoise-2012), Prague, Czech Republic
    De Volder, A. G., Catalan-Ahumada, M., Robert, A., Bol, A., Labar, D., Coppens, A., & Veraart, C. (1999). Changes in occipital cortex activity in early blind humans using a sensory substitution device. Brain Research, 826, 128–134.PubMed CrossRef
    Després, O., Candas, V., & Dufour, A. (2005). Auditory compensation in myopic humans: Involvement of binaural, monaural, or echo cues? Brain Research, 1041, 56–65.PubMed CrossRef
    Doucet, M. E., Guillemot, J. P., Lassonde, M., Gagne, J. P., Leclerc, C., & Lepore, F. (2005). Blind subjects process auditory spectral cues more efficiently than sighted individuals. Experimental Brain Research, 160, 194–202.PubMed CrossRef
    Duda, R. O., & Martens, W. L. (1998). Range dependence of the response of a spherical head model. The Journal of the Acoustical Society of America, 104, 3048–3058.CrossRef
    Dufour, A., & Gérard, Y. (2000). Improved auditory spatial sensitivity in near-sighted subjects. Cognitive Brain Research, 10, 159–165.PubMed CrossRef
    Edwards, A. S. (1955). Accuracy of auditory depth perception. The Journal of General Psychology, 52, 327–329.CrossRef
    Eriksson, A., & Traunmüller, H. (2002). Perception of vocal effort and distance from the speaker on the basis of vowel utterances. Perception and Psychophysics, 64, 131–139.PubMed CrossRef
    Farnè, A., & Làdavas, E. (2002). Auditory peripersonal space in humans. Journal of Cognitive Neuroscience, 14, 1030–1043.PubMed CrossRef
    Fontana, F., & Rocchesso, D. (2008). Auditory distance perception in an acoustic pipe. ACM Transactions on Applied Perception (TAP), 5, 16.
    Freiberg, K., Tually, K., & Crassini, B. (2001). Use of an auditory looming task to test infants’ sensitivity to sound pressure level as an auditory distance cue. British Journal of Developmental Psychology, 19, 1–10.CrossRef
    Gagnon, K. T., Geuss, M. N., & Stefanucci, J. K. (2013). Fear influences perceived reaching to targets in audition, but not vision. Evolution and Human Behavior, 34, 49–54.CrossRef
    Gamble, E. A. (1909). Intensity as a criterion in estimating the distance of sounds. Psychological Review, 16, 415–426.CrossRef
    Gardner, M. B. (1968). Proximity image effect in sound localization. The Journal of the Acoustical Society of America, 43, 163.PubMed CrossRef
    Gardner, M. B. (1969). Distance estimation of 0° or apparent 0°‐oriented speech signals in anechoic space. The Journal of the Acoustical Society of America, 45, 47–53.PubMed CrossRef
    Ghazanfar, A. A., Neuhoff, J. G., & Logothetis, N. K. (2002). Auditory looming perception in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 99, 15755–15757.PubMedCentral PubMed CrossRef
    Gordon, M. S., Russo, F. A., & MacDonald, E. (2013). Spectral information for detection of acoustic time to arrival. Attention, Perception, and Psychophysics, 75, 738–750.CrossRef
    Gori, M., Sandini, G., Martinoli, C., & Burr, D. C. (2014). Impairment of auditory spatial localization in congenitally blind human subjects. Brain, 137, 288–293.PubMedCentral PubMed CrossRef
    Gougoux, F., Lepore, F., Lassonde, M., Voss, P., Zatorre, R. J., & Belin, P. (2004). Pitch discrimination in the early blind. Nature, 430, 309–309.PubMed CrossRef
    Gougoux, F., Zatorre, R. J., Lassonde, M., Voss, P., & Lepore, F. (2005). A functional neuroimaging study of sound localization: Visual cortex activity predicts performance in early-blind individuals. PLoS Biology, 3, 324–333.CrossRef
    Graziano, M. S. A., & Cooke, D. F. (2006). Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia, 44, 845–859.PubMed CrossRef
    Graziano, M. S. A., & Gross, C. G. (1998). Spatial maps for the control of movement. Current Opinion in Neurobiology, 8, 195–201.PubMed CrossRef
    Graziano, M. S. A., Reiss, L. A. J., & Gross, C. G. (1999). A neuronal representation of the location of nearby sounds. Nature, 397, 428–430.PubMed CrossRef
    Greene, D. C. (1968). Comment on perception of the range of a sound-source of unknown strength. Journal of the Acoustical Society of America, 44, 634.CrossRef
    Guski, R. (1990). Auditory localization: Effects of reflecting surfaces. Perception, 19, 819–830.
    Guth, D. A., Long, R. G., Emerson, R. S. W., Ponchillia, P. E., & Ashmead, D. H. (2013). Blind and sighted pedestrians’ road-crossing judgments at a single-lane roundabout. Human Factors: The Journal of the Human Factors and Ergonomics Society, 55, 632–642.CrossRef
    Hall, D. A., & Moore, D. R. (2003). Auditory neuroscience: The salience of looming sounds. Current Biology, 13, 91–93.CrossRef
    Hartley, R. V. L., & Fry, T. C. (1921). The Binaural Location of Pure Tones. Physical Review, 18, 431–442.CrossRef
    Hartmann, D. (1983). Localization of sound in rooms. The Journal of the Acoustical Society of America, 74, 1380–1391.PubMed CrossRef
    Hartmann, W. M., & Wittenberg, A. (1996). On the externalization of sound images. The Journal of the Acoustical Society of America, 99, 3678–3688.PubMed CrossRef
    Haykin, S., & Chen, Z. (2005). The cocktail party problem. Neural Computation, 17, 1875–1902.PubMed CrossRef
    Hellier, E., Edworthy, J., Weedon, B., Walters, K., & Adams, A. (2002). The perceived urgency of speech warnings: Semantics versus acoustics. Human Factors: The Journal of the Human Factors and Ergonomics Society, 44, 1–17.CrossRef
    Heron, J., Whitaker, D., McGraw, P. V., & Horoshenkov, K. V. (2007). Adaptation minimizes distance-related audiovisual delays. Journal of Vision, 7, 1–8.PubMed CrossRef
    Higuchi, T., Imanaka, K., & Patla, A. E. (2006). Action-oriented representation of peripersonal and extrapersonal space: Insights from manual and locomotor actions. Japanese Psychological Research, 48, 126–140.CrossRef
    Hirsch, H. R. (1968). Perception of the range of a sound source of unknown strength. The Journal of the Acoustical Society of America, 43, 373–374.PubMed CrossRef
    Hládek, L., Le Dantec, C. C., Kopčo, N., & Seitz, A. (2013). Ventriloquism effect and aftereffect in the distance dimension. Proceedings of Meetings on Acoustics, 19, 050042.CrossRef
    Holt, R. E., & Thurlow, W. R. (1969). Subject orientation and judgment of distance of a sound source. The Journal of the Acoustical Society of America, 46, 1584–1585.PubMed CrossRef
    Hoover, A. E., Harris, L. R., & Steeves, J. K. (2012). Sensory compensation in sound localization in people with one eye. Experimental Brain Research, 216, 565–574.PubMed CrossRef
    Hughes, B. (2001). Active artificial echolocation and the nonvisual perception of aperture passability. Human Movement Science, 20, 371–400.PubMed CrossRef
    Jackson, R. E. (2009). Individual differences in distance perception. Proceedings of the Royal Society B: Biological Sciences, 276, 1665–1669.PubMedCentral PubMed CrossRef
    Jesteadt, W., Wier, C. C., & Green, D. M. (1977). Intensity discrimination as a function of frequency and sensation level. The Journal of the Acoustical Society of America, 61, 169–177.PubMed CrossRef
    Jetzt, J. J. (1979). Critical distance measurement of rooms from the sound energy spectral response. The Journal of the Acoustical Society of America, 65, 1204–1211.CrossRef
    Johnson, C. J., Pick, H. L., Jr., Siegel, G. M., Ciccciarelli, A. W., & Garber, S. R. (1981). Effects of interpersonal distance on children’s vocal intensity. Child Development, 52, 721–723.CrossRef
    Joris, P., Schreiner, C., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Reviews, 84, 541–577.PubMed CrossRef
    Kearney, G., Gorzel, M., Rice, H., & Boland, F. (2012). Distance perception in interactive virtual acoustic environments using first and higher order ambisonic sound fields. Acta Acustica united with Acustica, 98, 61–71.CrossRef
    Keating, P., & King, A. J. (2013). Developmental plasticity of spatial hearing following asymmetric hearing loss: Context-dependent cue integration and its clinical implications. Frontiers in Systems Neuroscience, 7, 123.PubMedCentral PubMed CrossRef
    Kidd, G., Jr., Arbogast, T. L., Mason, C. R., & Gallun, F. J. (2005). The advantage of knowing where to listen. The Journal of the Acoustical Society of America, 118, 3804–3815.PubMed CrossRef
    Kim, H. Y., Suzuki, Y., Takane, S., & Sone, T. (2001). Control of auditory distance perception based on the auditory parallax model. Applied Acoustics, 62, 245–270.CrossRef
    Kim, D. O., Zahorik, P., Carney, L. H., Bishop, B. B., & Kuwada, S. (2015). Auditory distance coding in rabbit midbrain neurons and human perception: Monaural amplitude modulation depth as a cue. The Journal of Neuroscience, 35, 5360–5372.PubMedCentral PubMed CrossRef
    Kolarik, A. J., Cirstea, S., Pardhan, S., & Moore, B. C. J. (2013a). An assessment of virtual auditory distance judgements among blind and sighted listeners. Proceedings of Meetings on Acoustics, 19, 050043.CrossRef
    Kolarik, A. J., Cirstea, S., & Pardhan, S. (2013b). Discrimination of virtual auditory distance using level and direct-to-reverberant ratio cues. The Journal of the Acoustical Society of America, 134, 3395–3398.PubMed CrossRef
    Kolarik, A. J., Cirstea, S., & Pardhan, S. (2013c). Evidence for enhanced discrimination of virtual auditory distance among blind listeners using level and direct-to-reverberant cues. Experimental Brain Research, 224, 623–633.PubMed CrossRef
    Kolarik, A. J., Pardhan, S., Cirstea, S., & Moore, B. C. J. (2013d). Using acoustic information to perceive room size: Effects of blindness, room reverberation time, and stimulus. Perception, 42, 985–990.PubMed CrossRef
    Kolarik, A. J., Cirstea, S., Pardhan, S., & Moore, B. C. J. (2014a). A summary of research investigating echolocation abilities of blind and sighted humans. Hearing Research, 310, 60–68.
    Kolarik, A. J., Timmis, M. A., Cirstea, S., & Pardhan, S. (2014b). Sensory substitution information informs locomotor adjustments when walking through apertures. Experimental Brain Research, 232, 975–984.PubMed CrossRef
    Kopčo, N., Huang, S., Belliveau, J. W., Raij, T., Tengshe, C., & Ahveninen, J. (2012). Neuronal representations of distance in human auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 109, 11019–11024.
    Kopčo, N., & Shinn-Cunningham, B. G. (2003). Spatial unmasking of nearby pure-tone targets in a simulated anechoic environment. The Journal of the Acoustical Society of America, 114, 2856–2870.PubMed CrossRef
    Kopčo, N., & Shinn-Cunningham, B. G. (2011). Effect of stimulus spectrum on distance perception for nearby sources. The Journal of the Acoustical Society of America, 130, 1530–1541.PubMedCentral PubMed CrossRef
    Krishna, B. S., & Semple, M. N. (2000). Auditory temporal processing: Responses to sinusoidally amplitude-modulated tones in the inferior colliculus. Journal of Neurophysiology, 84, 255–273.PubMed
    Kuwada, S., Bishop, B., & Kim, D. O. (2014). Azimuth and envelope coding in the inferior colliculus of the unanesthetized rabbit: Effect of reverberation and distance. Journal of Neurophysiology, 112, 1340–1355.PubMedCentral PubMed CrossRef
    Lai, H. H., & Chen, Y. C. (2006). A study on the blind's sensory ability. International Journal of Industrial Ergonomics, 36, 565–570.CrossRef
    Larsen, E., Iyer, N., Lansing, C. R., & Feng, A. S. (2008). On the minimum audible difference in direct-to-reverberant energy ratio. The Journal of the Acoustical Society of America, 124, 450–461.PubMedCentral PubMed CrossRef
    Lessard, N., Pare, M., Lepore, F., & Lassonde, M. (1998). Early-blind human subjects localize sound sources better than sighted subjects. Nature, 395, 278–280.PubMed CrossRef
    Lewald, J. (2002a). Opposing effects of head position on sound localization in blind and sighted human subjects. European Journal of Neuroscience, 15, 1219–1224.PubMed CrossRef
    Lewald, J. (2002b). Vertical sound localization in blind humans. Neuropsychologia, 40, 1868–1872.PubMed CrossRef
    Lewald, J. (2013). Exceptional ability of blind humans to hear sound motion: Implications for the emergence of auditory space. Neuropsychologia, 51, 181–186.PubMed CrossRef
    Litovsky, R. Y., & Clifton, R. K. (1992). Use of sound‐pressure level in auditory distance discrimination by 6‐month‐old infants and adults. The Journal of the Acoustical Society of America, 92, 794–802.PubMed CrossRef
    Little, A. D., Mershon, D. H., & Cox, P. H. (1992). Spectral content as a cue to perceived auditory distance. Perception, 21, 405–416.PubMed CrossRef
    Loomis, J. M., Klatzky, R. L., Philbeck, J. W., & Golledge, R. G. (1998). Assessing auditory distance perception using perceptually directed action. Attention, Perception, & Psychophysics, 60, 966–980.CrossRef
    Macé, M. J. M., Dramas, F., & Jouffrais, C. (2012). Reaching to sound accuracy in the peri-personal space of blind and sighted humans. In K. Miesenberger, A. Karshmer, P. Penaz, & W. W. Zagler (Eds.), Computers Helping People with Special Needs: 13th International Conference, ICCHP 2012 (pp. 636–643). Linz: Springer-Verlag.CrossRef
    Maidenbaum, S., Levy-Tzedek, S., Chebat, D. R., Namer-Furstenberg, R., & Amedi, A. (2014). The effect of extended sensory range via the EyeCane sensory substitution device on the characteristics of visionless virtual navigation. Multisensory Research, 27, 379–397.PubMed CrossRef
    Maidenbaum, S., Levy-Tzedek, S., Chebat, D. R., & Amedi, A. (2013). Increasing accessibility to the blind of virtual environments, using a virtual mobility aid based on the "EyeCane": Feasibility study. PloS one, 8, e72555.PubMedCentral PubMed CrossRef
    Mathiak, K., Hertrich, I., Kincses, W. E., Riecker, A., Lutzenberger, W., & Ackermann, H. (2003). The right supratemporal plane hears the distance of objects: Neuromagnetic correlates of virtual reality. Neuroreport, 14, 307–311.PubMed CrossRef
    McGregor, P., Horn, A. G., & Todd, M. A. (1985). Are familiar sounds ranged more accurately? Perceptual and Motor Skills, 61, 1082.PubMed CrossRef
    Meijer, P. B. L. (1992). An experimental system for auditory image representations. IEEE Transactions on Biomedical Engineering, 39, 112–121.PubMed CrossRef
    Mershon, D. H., Ballenger, W. L., Little, A. D., McMurtry, P. L., & Buchanan, J. L. (1989). Effects of room reflectance and background noise on perceived auditory distance. Perception, 18, 403–416.PubMed CrossRef
    Mershon, D. H., & Bowers, J. N. (1979). Absolute and relative cues for the auditory perception of egocentric distance. Perception, 8, 311–322.PubMed CrossRef
    Mershon, D. H., Desaulniers, D. H., Amerson, T. L., & Kiefer, S. A. (1980). Visual capture in auditory distance perception: Proximity image effect reconsidered. Journal of Auditory Research, 20, 129–136.PubMed
    Mershon, D. H., & King, L. E. (1975). Intensity and reverberation as factors in the auditory perception of egocentric distance. Attention, Perception, & Psychophysics, 18, 409–415.CrossRef
    Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42, 135–159.PubMed CrossRef
    Miller, G. A. (1947). Sensitivity to changes in the intensity of white noise and its relation to masking and loudness. The Journal of the Acoustical Society of America, 19, 609–619.CrossRef
    Molino, J. (1973). Perceiving the range of a sound source when the direction is known. The Journal of the Acoustical Society of America, 53, 1301–1304.PubMed CrossRef
    Moore, B. C. J. (2007). Cochlear Hearing Loss: Physiological, Psychological and Technical Issues (2nd ed.). Chichester: Wiley.CrossRef
    Moore, B. C. J. (2008). The choice of compression speed in hearing aids: Theoretical and practical considerations and the role of individual differences. Trends in Amplification, 12, 103–112.PubMedCentral PubMed CrossRef
    Moore, D. R., & King, A. J. (1999). Auditory perception: The near and far of sound localization. Current Biology, 9, 361–363.CrossRef
    Morrongiello, B. A., & Fenwick, K. D. (1991). Infants' coordination of auditory and visual depth information. Journal of Experimental Child Psychology, 52, 277–296.PubMed CrossRef
    Morrongiello, B. A., Hewitt, K. L., & Gotowiec, A. (1991). Infants' discrimination of relative distance in the auditory modality: approaching versus receding sound sources. Infant Behavior and Development, 14, 187–208.CrossRef
    Musa-Shufani, S., Walger, M., von Wedel, H., & Meister, H. (2006). Influence of dynamic compression on directional hearing in the horizontal plane. Ear and Hearing, 27, 279–285.PubMed CrossRef
    Naguib, M., & Wiley, R. H. (2001). Estimating the distance to a source of sound: Mechanisms and adaptations for long-range communication. Animal Behaviour, 62, 825–837.CrossRef
    Nelson, P. C., & Carney, L. H. (2004). A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. The Journal of the Acoustical Society of America, 116, 2173–2186.PubMedCentral PubMed CrossRef
    Neuhoff, J. G. (1998). Perceptual bias for rising tones. Nature, 395, 123–124.PubMed CrossRef
    Neuhoff, J. G. (2004). Ecological Psychoacoustics. Amsterdam: Elsevier Academic Press.CrossRef
    Nielsen, S. H. (1993). Auditory distance perception in different rooms. Journal of the Audio Engineering Society, 41, 755–770.
    Occelli, V., Spence, C., & Zampini, M. (2013). Auditory, tactile, and audiotactile information processing following visual deprivation. Psychological Bulletin, 139, 189–212.PubMed CrossRef
    Otani, M., Hirahara, T., & Ise, S. (2009). Numerical study on source-distance dependency of head-related transfer functions. The Journal of the Acoustical Society of America, 125, 3253–3261.PubMed CrossRef
    Parseihian, G., Jouffrais, C., & Katz, B. F. (2014). Reaching nearby sources: Comparison between real and virtual sound and visual targets. Frontiers in Neuroscience, 8, 269.PubMedCentral PubMed CrossRef
    Perrott, D. R., Saberi, K., Brown, K., & Strybel, T. Z. (1990). Auditory psychomotor coordination and visual search performance. Perception & Psychophysics, 48, 214–226.CrossRef
    Philbeck, J. W., & Mershon, D. H. (2002). Knowledge about typical source output influences perceived auditory distance. The Journal of the Acoustical Society of America, 111, 1980–1983.PubMed CrossRef
    Pickett, J. M. (1956). Effects of vocal force on the intelligibility of speech sounds. The Journal of the Acoustical Society of America, 28, 902–905.CrossRef
    Rand, K., Tarampi, M., Creem-Regehr, S. H., & Thompson, W. B. (2011). The importance of a visual horizon for distance judgments under severely degraded vision. Perception, 40, 143–154.PubMedCentral PubMed CrossRef
    Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12, 718–724.PubMedCentral PubMed CrossRef
    Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences, 97(Tian, B), 11800–11806.CrossRef
    Recanzone, G. H., & Cohen, Y. E. (2010). Serial and parallel processing in the primate auditory cortex revisited. Behavioural Brain Research, 206, 1–7.PubMedCentral PubMed CrossRef
    Reichardt, W., & Schmidt, W. (1966). Die horbaren stufen des raumeindruckes bei Musik (The audible steps of spatial impression in music performances). Acustica, 17, 175–179.
    Renier, L., Collignon, O., Poirier, C., Tranduy, D., Vanlierde, A., Bol, A., & De Volder, A. G. (2005). Cross-modal activation of visual cortex during depth perception using auditory substitution of vision. NeuroImage, 26, 573–580.PubMed CrossRef
    Richards, D. G., & Wiley, R. H. (1980). Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communication. The American Naturalist, 115, 381–399.CrossRef
    Riesz, R. (1933). The relationship between loudness and the minimum perceptible increment of intensity. The Journal of the Acoustical Society of America, 4, 211–216.CrossRef
    Roentgen, U. R., Gelderblom, G. J., Soede, M., & de Witte, L. P. (2009). The impact of electronic mobility devices for persons who are visually impaired: A systematic review of effects and effectiveness. Journal of Visual Impairment and Blindness, 103, 743–753.
    Ronsse, L. M., & Wang, L. M. (2012). Effects of room size and reverberation, receiver location, and source rotation on acoustical metrics related to source localization. Acta Acustica united with Acustica, 98, 768–775.CrossRef
    Rowan, D., Papadopoulos, T., Edwards, D., Holmes, H., Hollingdale, A., Evans, L., & Allen, R. (2013). Identification of the lateral position of a virtual object based on echoes by humans. Hearing Research, 300, 56–65.PubMed CrossRef
    Russell, M. K., & Schneider, A. L. (2006). Sound source perception in a two-dimensional setting: Comparison of action and nonaction-based response tasks. Ecological Psychology, 18, 223–237.CrossRef
    Schenkman, B. N., & Nilsson, M. E. (2011). Human echolocation: Pitch versus loudness information. Perception, 40, 840–852.PubMed CrossRef
    Schiff, W., & Oldak, R. (1990). Accuracy of judging time to arrival: Effects of modality, trajectory, and gender. Journal of Experimental Psychology: Human Perception and Performance, 16, 303–316.PubMed
    Seifritz, E., Neuhoff, J. G., Bilecen, D., Scheffler, K., Mustovic, H., Schächinger, H., & Di Salle, F. (2002). Neural processing of auditory looming in the human brain. Current Biology, 12, 2147–2151.PubMed CrossRef
    Serino, A., Bassolino, M., Farnè, A., & Làdavas, E. (2007). Extended multisensory space in blind cane users. Psychological Science, 18, 642–648.PubMed CrossRef
    Serino, A., Canzoneri, E., & Avenanti, A. (2011). Fronto-parietal areas necessary for a multisensory representation of peripersonal space in humans: An rTMS study. Journal of Cognitive Neuroscience, 23, 2956–2967.PubMed CrossRef
    Shinn-Cunningham, B. (2000). Learning reverberation: Considerations for spatial auditory displays. Paper presented at the Proceedings of the 2000 International Conference on Auditory Display, Atlanta.
    Shinn-Cunningham, B. G., Kopčo, N., & Martin, T. J. (2005). Localizing nearby sound sources in a classroom: Binaural room impulse responses. The Journal of the Acoustical Society of America, 117, 3100–3115.PubMed CrossRef
    Shinn-Cunningham, B. G., Santarelli, S., & Kopco, N. (2000). Tori of confusion: Binaural localization cues for sources within reach of a listener. The Journal of the Acoustical Society of America, 107, 1627–1636.PubMed CrossRef
    Siegel, E. H., & Stefanucci, J. K. (2011). A little bit louder now: Negative affect increases perceived loudness. Emotion, 11, 1006–1011.PubMedCentral PubMed CrossRef
    Simon, H. J., Divenyi, P. L., & Lotze, A. (2002). Lateralization of narrow-band noise by blind and sighted listeners. Perception, 31, 855–873.PubMed CrossRef
    Simon, H. J., & Levitt, H. (2007). Effect of dual sensory loss on auditory localization: Implications for intervention. Trends in Amplification, 11, 259–272.PubMedCentral PubMed CrossRef
    Simpson, W., & Stanton, L. D. (1973). Head movement does not facilitate perception of the distance of a source of sound. American Journal of Psychology, 86, 151–159.PubMed CrossRef
    Sinnott, J. M., & Aslin, R. N. (1985). Frequency and intensity discrimination in human infants and adults. The Journal of the Acoustical Society of America, 78, 1986–1992.PubMed CrossRef
    Sohl-Dickstein, J., Teng, S., Gaub, B. M., Rodgers, C. C., Li, C., DeWeese, M. R., & Harper, N. S. (2014). A device for human ultrasonic echolocation. IEEE Transactions on Biomedical Engineering, 1, 1–7.
    Speigle, J. M., & Loomis, J. M. (1993). Auditory distance perception by translating observrs. Paper presented at the IEEE Symposium on Research Frontiers in Virtual Reality, Washington, DC.
    Spiousas, I., Etchemendy, P. E., Vergara, R. O., Calcagno, E. R., & Eguia, M. C. (2015). An auditory illusion of proximity of the source induced by sonic crystals. PloS one, 10(7), e0133271.PubMedCentral PubMed CrossRef
    Stefanucci, J., Gagnon, K., Tompkins, C., & Bullock, K. (2012). Plunging into the pool of death: Imagining a dangerous outcome influences distance perception. Perception, 41, 1–11.PubMedCentral PubMed CrossRef
    Stewart, G. (1911). The acoustic shadow of a rigid sphere with certain applications in architectural acoustics and audition. Physical Review, 33, 467–479.
    Stoffregen, T. A., & Pittenger, J. B. (1995). Human echolocation as a basic form of perception and action. Ecological Psychology, 7, 181–216.CrossRef
    Strybel, T. Z., & Perrott, D. R. (1984). Discrimination of relative distance in the auditory modality: The success and failure of the loudness discrimination hypothesis. The Journal of the Acoustical Society of America, 76, 318–320.PubMed CrossRef
    Sugita, Y., & Suzuki, Y. (2003). Audiovisual perception: Implicit estimation of sound-arrival time. Nature, 421, 911.PubMed CrossRef
    Sugovic, M., & Witt, J. K. (2013). An older view on distance perception: Older adults perceive walkable extents as farther. Experimental Brain Research, 226, 383–391.PubMed CrossRef
    Tao, Q., Chan, C. C. H., Luo, Y., Li, J., Ting, K., Wang, J., & Lee, T. M. C. (2013). How does experience modulate auditory spatial processing in individuals with blindness? Brain Topography, 1-14.
    Tarquinio, N., Zelazo, P. R., & Weiss, M. J. (1990). Recovery of neonatal head turning to decreased sound pressure level. Developmental Psychology, 26, 752–758.CrossRef
    Teghtsoonian, R., Teghtsoonian, M., & Canévet, G. (2005). Sweep-induced acceleration in loudness change and the "bias for rising intensities". Perception and Psychophysics, 67, 699–712.PubMed CrossRef
    Teramoto, W., Sakamoto, S., Furune, F., Gyoba, J., & Suzuki, Y. (2012). Compression of auditory space during forward self-motion. PLoS One, 7, e39402.PubMedCentral PubMed CrossRef
    Tooby, J., & Cosmides, L. (2008). The evolutionary psychology of the emotions and their relationship to internal regulatory variables. In M. Lewis, J. M. Haviland-Jones, & L. F. Barrett (Eds.), Handbook of emotions (3rd ed., pp. 114–137). NY: Guilford.
    van der Meer, A. L., Ramstad, M., & Van der Weel, F. (2008). Choosing the shortest way to mum: Auditory guided rotation in 6-to 9-month-old infants. Infant Behavior and Development, 31, 207–216.PubMed CrossRef
    von Békésy, G. (1938). Uber die entstehung der entfernungsempfindung beim horen (On the origin of the sensation of distance in hearing). Akustische Zeitschrift, 3, 21–31.
    von Békésy, G. (1949). The moon illusion and similar auditory phenomena. American Journal of Psychology, 62, 540–552.CrossRef
    Voss, P., Collignon, O., Lassonde, M., & Lepore, F. (2010). Adaptation to sensory loss. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 308–328.PubMed
    Voss, P., Lassonde, M., Gougoux, F., Fortin, M., Guillemot, J., & Lepore, F. (2004). Early- and late-onset blind individuals show supra-normal auditory abilities in far-space. Current Biology, 14, 1734–1738.PubMed CrossRef
    Voss, P., Lepore, F., Gougoux, F., & Zatorre, R. J. (2011). Relevance of spectral cues for auditory spatial processing in the occipital cortex of the blind. Frontiers in Psychology, 2, 48.PubMedCentral PubMed CrossRef
    Voss, P., & Zatorre, R. J. (2012). Organization and reorganization of sensory-deprived cortex. Current Biology, 22, 168–173.CrossRef
    Walker-Andrews, A. S., & Lennon, E. M. (1985). Auditory-visual perception of changing distance by human infants. Child Development, 56, 544–548.PubMed CrossRef
    Wallmeier, L., & Wiegrebe, L. (2014). Ranging in human sonar: Effects of additional early reflections and exploratory head movements. PloS One, 9, e115363.PubMedCentral PubMed CrossRef
    Wan, C. Y., Wood, A. G., Reutens, D. C., & Wilson, S. J. (2010). Early but not late-blindness leads to enhanced auditory perception. Neuropsychologia, 48, 344–348.PubMed CrossRef
    Wanet, M., & Veraart, C. (1985). Processing of auditory information by the blind in spatial localization tasks. Attention, Perception, & Psychophysics, 38, 91–96.CrossRef
    Warren, D. H., Welch, R. B., & McCarthy, T. J. (1981). The role of visual-auditory “compellingness” in the ventriloquism effect: Implications for transitivity among the spatial senses. Perception and Psychophysics, 30, 557–564.PubMed CrossRef
    Wightman, E. R., & Firestone, F. A. (1930). Binaural localization of pure tones. The Journal of the Acoustical Society of America, 2, 271–280.CrossRef
    Wisniewski, M. G., Mercado, E., Gramann, K., & Makeig, S. (2012). Familiarity with speech affects cortical processing of auditory distance cues and increases acuity. PLoS One, 7, e41025.PubMedCentral PubMed CrossRef
    Zahorik, P. (2001). Estimating sound source distance with and without vision. Optometry and Vision Science, 78, 270–275.PubMed CrossRef
    Zahorik, P. (2002a). Assessing auditory distance perception using virtual acoustics. The Journal of the Acoustical Society of America, 111, 1832–1846.PubMed CrossRef
    Zahorik, P. (2002b). Direct-to-reverberant energy ratio sensitivity. The Journal of the Acoustical Society of America, 112, 2110–2117.PubMed CrossRef
    Zahorik, P., & Anderson, P. W. (2014). The role of amplitude modulation in auditory distance perception. Proceedings of Meetings on Acoustics, 21, 050006.CrossRef
    Zahorik, P., Brungart, D. S., & Bronkhorst, A. W. (2005). Auditory distance perception in humans: A summary of past and present research. Acta Acustica united with Acustica, 91, 409–420.
    Zahorik, P., & Kelly, J. W. (2007). Accurate vocal compensation for sound intensity loss with increasing distance in natural environments. The Journal of the Acoustical Society of America, 122, 143–150.CrossRef
    Zahorik, P., & Wightman, F. L. (2001). Loudness constancy with varying sound source distance. Nature Neuroscience, 4, 78–83.PubMed CrossRef
    Zwiers, M., Van Opstal, A., & Cruysberg, J. (2001). A spatial hearing deficit in early-blind humans. Journal of Neuroscience, 21, 141–145.
  • 作者单位:Andrew J. Kolarik (1) (2) (3)
    Brian C. J. Moore (3)
    Pavel Zahorik (4)
    Silvia Cirstea (2)
    Shahina Pardhan (2)

    1. Centre for the Study of the Senses, Institute of Philosophy, University of London, Senate House, Malet Street, London, WC1E 7HU, UK
    2. Vision and Eye Research Unit (VERU), Postgraduate Medical Institute, Anglia Ruskin University, Eastings 204, East Road, Cambridge, CB1 1PT, UK
    3. Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
    4. Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, 49292, USA
  • 刊物主题:Cognitive Psychology;
  • 出版者:Springer US
  • ISSN:1943-393X
文摘
Auditory distance perception plays a major role in spatial awareness, enabling location of objects and avoidance of obstacles in the environment. However, it remains under-researched relative to studies of the directional aspect of sound localization. This review focuses on the following four aspects of auditory distance perception: cue processing, development, consequences of visual and auditory loss, and neurological bases. The several auditory distance cues vary in their effective ranges in peripersonal and extrapersonal space. The primary cues are sound level, reverberation, and frequency. Nonperceptual factors, including the importance of the auditory event to the listener, also can affect perceived distance. Basic internal representations of auditory distance emerge at approximately 6 months of age in humans. Although visual information plays an important role in calibrating auditory space, sensorimotor contingencies can be used for calibration when vision is unavailable. Blind individuals often manifest supranormal abilities to judge relative distance but show a deficit in absolute distance judgments. Following hearing loss, the use of auditory level as a distance cue remains robust, while the reverberation cue becomes less effective. Previous studies have not found evidence that hearing-aid processing affects perceived auditory distance. Studies investigating the brain areas involved in processing different acoustic distance cues are described. Finally, suggestions are given for further research on auditory distance perception, including broader investigation of how background noise and multiple sound sources affect perceived auditory distance for those with sensory loss. Keywords Distance perception Blindness Hearing loss Sound level Compensatory plasticity

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700