Global analysis of saliva as a source of bacterial genes for insights into human population structure and migration studies
详细信息    查看全文
  • 作者:Karsten Henne (1)
    Jing Li (2) (3)
    Mark Stoneking (2)
    Olga Kessler (1)
    Hildegard Schilling (1)
    Anne Sonanini (1)
    Georg Conrads (1)
    Hans-Peter Horz (4)

    1. Division of Oral Microbiology and Immunology
    ; Department for Operative Dentistry ; Periodontology and Preventive Dentistry ; RWTH Aachen University Hospital ; Pauwelsstrasse 30 ; D-52057 ; Aachen ; Germany
    2. Department of Evolutionary Genetics
    ; Max Planck Institute for Evolutionary Anthropology ; Deutscher Platz 6 ; D-04103 ; Leipzig ; Germany
    3. Current address
    ; Max Planck Independent Research Group on Population Genomics ; Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology ; Shanghai Institutes for Biological Sciences ; Chinese Academy of Sciences ; Shanghai ; 200031 ; China
    4. Division of Virology
    ; Institute of Medical Microbiology ; RWTH Aachen University Hospital ; Pauwelsstrasse 30 ; D-52057 ; Aachen ; Germany
  • 关键词:Oral Microbiome ; Human migration pattern ; Glucosyltransferase
  • 刊名:BMC Evolutionary Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:1,221 KB
  • 参考文献:1. Hohwy, J, Reinholdt, J, Kilian, M (2001) Population dynamics of Streptococcus mitis in its natural habitat. Infect Immun 69: pp. 6055-6063 CrossRef
    2. Bek-Thomsen, M, Tettelin, H, Hance, I, Nelson, KE, Kilian, M (2008) Population diversity and dynamics of Streptococcus mitis, Streptococcus oralis, and Streptococcus infantis in the upper respiratory tracts of adults, determined by a nonculture strategy. Infect Immun 76: pp. 1889-1896 CrossRef
    3. Linz, B, Balloux, F, Moodley, Y, Manica, A, Liu, H, Roumagnac, P, Falush, D, Stamer, C, Prugnolle, F, Merwe, SW, Yamaoka, Y, Graham, DY, Perez-Trallero, E, Wadstrom, T, Suerbaum, S, Achtman, M (2007) An African origin for the intimate association between humans and Helicobacter pylori. Nature 445: pp. 915-918 CrossRef
    4. Falush, D, Wirth, T, Linz, B, Pritchard, JK, Stephens, M, Kidd, M, Blaser, MJ, Graham, DY, Vacher, S, Perez-Perez, GI, Yamaoka, Y, Megraud, F, Otto, K, Reichard, U, Katzowitsch, E, Wang, X, Achtman, M, Suerbaum, S (2003) Traces of human migrations in Helicobacter pylori populations. Science 299: pp. 1582-1585 CrossRef
    5. Moodley, Y, Linz, B, Yamaoka, Y, Windsor, HM, Breurec, S, Wu, JY, Maady, A, Bernhoft, S, Thiberge, JM, Phuanukoonnon, S, Jobb, G, Siba, P, Graham, DY, Marshall, BJ, Achtman, M (2009) The peopling of the Pacific from a bacterial perspective. Science 323: pp. 527-530 CrossRef
    6. Melton, T, Peterson, R, Redd, AJ, Saha, N, Sofro, AS, Martinson, J, Stoneking, M (1995) Polynesian genetic affinities with Southeast Asian populations as identified by mtDNA analysis. Am J Hum Genet 57: pp. 403-414 CrossRef
    7. Trejaut, JA, Kivisild, T, Loo, JH, Lee, CL, He, CL, Hsu, CJ, Lee, ZY, Lin, M (2005) Traces of archaic mitochondrial lineages persist in Austronesian-speaking Formosan populations. PLoS Biol 3: pp. e247 CrossRef
    8. Oppenheimer, SJ, Richards, M (2001) Polynesian origins. Slow boat to Melanesia?. Nature 410: pp. 166-167 CrossRef
    9. Richards, M, Oppenheimer, S, Sykes, B (1998) mtDNA suggests Polynesian origins in Eastern Indonesia. Am J Hum Genet 63: pp. 1234-1236 CrossRef
    10. Wirth, T, Wang, X, Linz, B, Novick, RP, Lum, JK, Blaser, M, Morelli, G, Falush, D, Achtman, M (2004) Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: lessons from Ladakh. Proc Natl Acad Sci U S A 101: pp. 4746-4751 CrossRef
    11. Suerbaum, S, Josenhans, C (2007) Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 5: pp. 441-452 CrossRef
    12. Blaser, MJ, Falkow, S (2009) What are the consequences of the disappearing human microbiota?. Nat Rev Microbiol 7: pp. 887-894 CrossRef
    13. Segata, N, Haake, SK, Mannon, P, Lemon, KP, Waldron, L, Gevers, D, Huttenhower, C, Izard, J (2012) Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13: pp. R42 CrossRef
    14. Warinner, C, Rodrigues, JF, Vyas, R, Trachsel, C, Shved, N, Grossmann, J, Radini, A, Hancock, Y, Tito, RY, Fiddyment, S, Speller, C, Hendy, J, Charlton, S, Luder, HU, Salazar-Garcia, DC, Eppler, E, Seiler, R, Hansen, LH, Castruita, JA, Barkow-Oesterreicher, S, Teoh, Y, Kelstrup, CD, Olsen, JV, Nanni, P, Kawai, T, Willerslev, E, Mering, C, Lewis, CM, Collins, MJ, Gilbert, MT (2014) Pathogens and host immunity in the ancient human oral cavity. Nat Genet 46: pp. 336-344 CrossRef
    15. Adler, CJ, Dobney, K, Weyrich, LS, Kaidonis, J, Walker, AW, Haak, W, Bradshaw, CJ, Townsend, G, Soltysiak, A, Alt, KW, Parkhill, J, Cooper, A (2013) Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet 45: pp. 450-455 CrossRef
    16. Quinque, D, Kittler, R, Kayser, M, Stoneking, M, Nasidze, I (2006) Evaluation of saliva as a source of human DNA for population and association studies. Anal Biochem 353: pp. 272-277 CrossRef
    17. Li, Y, Ismail, AI, Ge, Y, Tellez, M, Sohn, W (2007) Similarity of bacterial populations in saliva from African-American mother-child dyads. J Clin Microbiol 45: pp. 3082-3085 CrossRef
    18. Li, Y, Caufield, PW (1995) The fidelity of initial acquisition of mutans streptococci by infants from their mothers. J Dent Res 74: pp. 681-685 CrossRef
    19. Winkelhoff, AJ, Boutaga, K (2005) Transmission of periodontal bacteria and models of infection. J Clin Periodontol 32: pp. 16-27 CrossRef
    20. Caufield, PW (2009) Tracking human migration patterns through the oral bacterial flora. Clin Microbiol Infect 15: pp. 37-39 CrossRef
    21. Caufield, PW, Ratanapridakul, K, Allen, DN, Cutter, GR (1988) Plasmid-containing strains of Streptococcus mutans cluster within family and racial cohorts: implications for natural transmission. Infect Immun 56: pp. 3216-3220
    22. Haraldsson, G, Holbrook, WP, Kononen, E (2004) Clonal persistence of oral Fusobacterium nucleatum in infancy. J Dent Res 83: pp. 500-504 CrossRef
    23. Haubek, D, Poulsen, K, Westergaard, J, Dahlen, G, Kilian, M (1996) Highly toxic clone of Actinobacillus actinomycetemcomitans in geographically widespread cases of juvenile periodontitis in adolescents of African origin. J Clin Microbiol 34: pp. 1576-1578
    24. Musser, JM, Kroll, JS, Granoff, DM, Moxon, ER, Brodeur, BR, Campos, J, Dabernat, H, Frederiksen, W, Hamel, J, Hammond, G, Arne H酶iby, EA, Jonsdottir, KE, Kabeer, M, Kallings, I, Khan, WN, Kilian, M, Knowles, K, Koornhof, HJ, Law, B, Li, KI, Montgomery, J, Pattison, PE, Piffaretti, JC, Takala, AK, Thong, ML, Wall, RA, Ward, JI, Selander, RK (1990) Global genetic structure and molecular epidemiology of encapsulated Haemophilus influenzae. Rev Infect Dis 12: pp. 75-111 CrossRef
    25. Nasidze, I, Li, J, Quinque, D, Tang, K, Stoneking, M (2009) Global diversity in the human salivary microbiome. Genome Res 19: pp. 636-643 CrossRef
    26. Urwin, R, Maiden, MC (2003) Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 11: pp. 479-487 CrossRef
    27. Do, T, Jolley, KA, Maiden, MC, Gilbert, SC, Clark, D, Wade, WG, Beighton, D (2009) Population structure of Streptococcus oralis. Microbiology 155: pp. 2593-2602 CrossRef
    28. Ip, M, Chi, F, Chau, SS, Hui, M, Tang, J, Chan, PK (2006) Use of the housekeeping genes, gdh (zwf) and gki, in multilocus sequence typing to differentiate Streptococcus pneumoniae from Streptococcus mitis and Streptococcus oralis. Diagn Microbiol Infect Dis 56: pp. 321-324 CrossRef
    29. Monchois, V, Willemot, RM, Monsan, P (1999) Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev 23: pp. 131-151
    30. Gonzales-Marin, C, Spratt, DA, Allaker, RP (2013) Maternal oral origin of Fusobacterium nucleatum in adverse pregnancy outcomes as determined using the 16S-23S rRNA gene intergenic transcribed spacer region. J Med Microbiol 62: pp. 133-144 CrossRef
    31. Conrads, G, Claros, MC, Citron, DM, Tyrrell, KL, Merriam, V, Goldstein, EJ (2002) 16S-23S rDNA internal transcribed spacer sequences for analysis of the phylogenetic relationships among species of the genus Fusobacterium. Int J Syst Evol Microbiol 52: pp. 493-499
    32. Kiratisin, P, Li, L, Murray, PR, Fischer, SH (2005) Use of housekeeping gene sequencing for species identification of viridans streptococci. Diagn Microbiol Infect Dis 51: pp. 297-301 CrossRef
    33. Alvarez, I, Wendel, JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29: pp. 417-434 CrossRef
    34. Argimon, S, Alekseyenko, AV, DeSalle, R, Caufield, PW (2013) Phylogenetic analysis of glucosyltransferases and implications for the coevolution of mutans streptococci with their mammalian hosts. PLoS One 8: pp. e56305 CrossRef
    35. Hoshino, T, Kawaguchi, M, Shimizu, N, Hoshino, N, Ooshima, T, Fujiwara, T (2004) PCR detection and identification of oral streptococci in saliva samples using gtf genes. Diagn Microbiol Infect Dis 48: pp. 195-199 CrossRef
    36. Fujiwara, T, Hoshino, T, Ooshima, T, Sobue, S, Hamada, S (2000) Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infect Immun 68: pp. 2475-2483 CrossRef
    37. Ludwig, W, Strunk, O, Westram, R, Richter, L, Meier, H, Yadhukumar Buchner, A, Lai, T, Steppi, S, Jobb, G, Forster, W, Brettske, I, Gerber, S, Ginhart, AW, Gross, O, Grumann, S, Hermann, S, Jost, R, Konig, A, Liss, T, Lussmann, R, May, M, Nonhoff, B, Reichel, B, Strehlow, R, Stamatakis, A, Stuckmann, N, Vilbig, A, Lenke, M, Ludwig, T (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: pp. 1363-1371 CrossRef
    38. Quast, C, Pruesse, E, Yilmaz, P, Gerken, J, Schweer, T, Yarza, P, Peplies, J, Glockner, FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: pp. D590-D596 CrossRef
    39. Katoh, K, Toh, H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9: pp. 286-298 CrossRef
    40. Schloss, PD, Westcott, SL, Ryabin, T, Hall, JR, Hartmann, M, Hollister, EB, Lesniewski, RA, Oakley, BB, Parks, DH, Robinson, CJ, Sahl, JW, Stres, B, Thallinger, GG, Horn, DJ, Weber, CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: pp. 7537-7541 CrossRef
    41. Chao, A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: pp. 783-791 CrossRef
    42. Excoffier, L, Laval, G, Schneider, S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1: pp. 47-50
    43. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-2739 CrossRef
    44. Lozupone, C, Hamady, M, Knight, R (2006) UniFrac鈥揳n online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7: pp. 371 CrossRef
    45. Bandelt, HJ, Forster, P, Rohl, A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: pp. 37-48 CrossRef
    46. Pavesi, A (2005) Utility of JC polyomavirus in tracing the pattern of human migrations dating to prehistoric times. J Gen Virol 86: pp. 1315-1326 CrossRef
    47. Koren, O, Knights, D, Gonzalez, A, Waldron, L, Segata, N, Knight, R, Huttenhower, C, Ley, RE (2013) A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol 9: pp. e1002863 CrossRef
    48. Gill, SR, Pop, M, Deboy, RT, Eckburg, PB, Turnbaugh, PJ, Samuel, BS, Gordon, JI, Relman, DA, Fraser-Liggett, CM, Nelson, KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312: pp. 1355-1359 CrossRef
    49. Turnbaugh, PJ, Ley, RE, Hamady, M, Fraser-Liggett, CM, Knight, R, Gordon, JI (2007) The human microbiome project. Nature 449: pp. 804-810 CrossRef
    50. Schloissnig, S, Arumugam, M, Sunagawa, S, Mitreva, M, Tap, J, Zhu, A, Waller, A, Mende, DR, Kultima, JR, Martin, J, Kota, K, Sunyaev, SR, Weinstock, GM, Bork, P (2013) Genomic variation landscape of the human gut microbiome. Nature 493: pp. 45-50 CrossRef
    51. Benezra, A, DeStefano, J, Gordon, JI (2012) Anthropology of microbes. Proc Natl Acad Sci U S A 109: pp. 6378-6381 CrossRef
    52. Fortenberry, JD (2013) The uses of race and ethnicity in human microbiome research. Trends Microbiol 21: pp. 165-166 CrossRef
    53. Mellars, P (2006) Going east: new genetic and archaeological perspectives on the modern human colonization of Eurasia. Science 313: pp. 796-800 CrossRef
    54. Stoneking, M, Harvarti, K Early Old World migrations of Homo sapiens: human biology. In: Ness, I eds. (2013) The Encyclopedia of Global Human Migration. Blackwell, New York
    55. Romualdi, C, Balding, D, Nasidze, IS, Risch, G, Robichaux, M, Sherry, ST, Stoneking, M, Batzer, MA, Barbujani, G (2002) Patterns of human diversity, within and among continents, inferred from biallelic DNA polymorphisms. Genome Res 12: pp. 602-612 CrossRef
    56. Rolla, G, Ciardi, JE, Schultz, SA (1983) Adsorption of glucosyltransferase to saliva coated hydroxyapatite. Possible mechanism for sucrose dependent bacterial colonization of teeth. Scand J Dent Res 91: pp. 112-117
    57. Bowen, WH, Koo, H (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45: pp. 69-86 CrossRef
    58. Breurec, S, Guillard, B, Hem, S, Brisse, S, Dieye, FB, Huerre, M, Oung, C, Raymond, J, Tan, TS, Thiberge, JM, Vong, S, Monchy, D, Linz, B (2011) Evolutionary history of Helicobacter pylori sequences reflect past human migrations in Southeast Asia. PLoS One 6: pp. e22058 CrossRef
    59. Belda-Ferre, P, Alcaraz, LD, Cabrera-Rubio, R, Romero, H, Simon-Soro, A, Pignatelli, M, Mira, A (2012) The oral metagenome in health and disease. Isme J 6: pp. 46-56 CrossRef
  • 刊物主题:Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography; Entomology; Genetics and Population Dynamics; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2148
文摘
Background The genetic diversity of the human microbiome holds great potential for shedding light on the history of our ancestors. Helicobacter pylori is the most prominent example as its analysis allowed a fine-scale resolution of past migration patterns including some that could not be distinguished using human genetic markers. However studies of H. pylori require stomach biopsies, which severely limits the number of samples that can be analysed. By focussing on the house-keeping gene gdh (coding for the glucose-6-phosphate dehydrogenase), on the virulence gene gtf (coding for the glucosyltransferase) of mitis-streptococci and on the 16S-23S rRNA internal transcribed spacer (ITS) region of the Fusobacterium nucleatum/periodonticum-group we here tested the hypothesis that bacterial genes from human saliva have the potential for distinguishing human populations. Results Analysis of 10 individuals from each of seven geographic regions, encompassing Africa, Asia and Europe, revealed that the genes gdh and ITS exhibited the highest number of polymorphic sites (59% and 79%, respectively) and most OTUs (defined at 99% identity) were unique to a given country. In contrast, the gene gtf had the lowest number of polymorphic sites (21%), and most OTUs were shared among countries. Most of the variation in the gdh and ITS genes was explained by the high clonal diversity within individuals (around 80%) followed by inter-individual variation of around 20%, leaving the geographic region as providing virtually no source of sequence variation. Conversely, for gtf the variation within individuals accounted for 32%, between individuals for 57% and among geographic regions for 11%. This geographic signature persisted upon extension of the analysis to four additional locations from the American continent. Pearson correlation analysis, pairwise Fst-cluster analysis as well as UniFrac analyses consistently supported a tree structure in which the European countries clustered tightly together and branched with American countries and South Africa, to the exclusion of Asian countries and the Congo. Conclusion This study shows that saliva harbours protein-coding bacterial genes that are geographically structured, and which could potentially be used for addressing previously unresolved human migration events.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700