Characterization and Application of Graphene Nanoplatelets in Elastomers
详细信息    查看全文
  • 关键词:Carbon nanotube (CNT) ; Elastomer composite ; Fracture mechanics ; Friction and wear properties ; Gas permeation ; Graphene nanoplatelet (GNP) ; Multilayer graphene (MLC) ; Ultrafine graphite (UG) ; Static gas adsorption
  • 刊名:Advances in Polymer Science
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:275
  • 期:1
  • 页码:319-360
  • 全文大小:2,774 KB
  • 参考文献:1.Geim AK, Novoselov KS (2007) Nat Mater 6:183–191CrossRef
    2.Verdejo R, Mar Bernal M, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21:3301–3310CrossRef
    3.Jang BZ, Zhamu A (2008) J Mater Sci 43:5092–5101CrossRef
    4.Li YJ et al (2012) J Mater Sci 47:730–738CrossRef
    5.Lang A, Karl CW, Klüppel M (2012) In: Proceedings of the 10th fall rubber colloquium (KHK), Hanover, 7–9 November 2012, pp 99–105
    6.Möwes M, Fleck F, Klüppel M (2013) Effect of filler surface activity and morphology on mechanical and dielectric properties of NBR/graphene nano-composites. Rubber Chem Technol 87:70–85CrossRef
    7.Möwes M, Fleck F, Wunde M, Klüppel M (2013) Graphenes as new active filler in elastomer composites with special features. In: Proceedings of the 6th international conference on carbon nanoparticle-based components (CNPComp), Dresden, 22–25 September 2013
    8.Klüppel M, Möwes M, Jungk J (2013) Carbon nano-particle based hybrid filler systems in elastomers. In: Proceedings of the 6th international conference on carbon nanoparticle-based components (CNPComp), Dresden, 22–25 September 2013
    9.Klüppel M (2003) The role of disorder in filler reinforcement of elastomers on various length scales. Adv Polym Sci 164:1–86CrossRef
    10.Vilgis TA, Heinrich G, Klüppel M (2009) Reinforcement of polymer nano-composites. Cambridge University Press, New YorkCrossRef
    11.Vilgis TA, Heinrich G (1994) Macromolecules 27:7846
    12.Gay C, de Gennes PG, Raphael E, Brochard-Wyart F (1996) Macromolecules 29:8379
    13.Kremer F, Schönshals A (2003) Broadband dielectric spectroscopy. Springer, Berlin, Heidelberg, New YorkCrossRef
    14.Payne AR (1958) In: Mason P, Wookey N (eds) Rheology of elastomers. Pergamon, London, pp 86–112
    15.Payne AR (1965) In: Kraus G (ed) Reinforcement of elastomers. Interscience, New York
    16.Wang MJ (1999) Rubber Chem Technol 72:430
    17.Klüppel M, Heinrich G (2005) Physics and engineering of reinforced elastomers. Kautschuk Gummi Kunstst 58:217–224
    18.Medalia AI (1978) Rubber Chem Technol 51:437
    19.Nawaz K, Khan U et al (2012) Observation of mechanical percolation in functionalized graphene oxide/elastomer composites. Carbon 50:4489–4494CrossRef
    20.Klüppel M, Schuster RH, Heinrich G (1997) Structure and properties of reinforcing fractal filler networks in elastomers. Rubber Chem Technol 70:243–255CrossRef
    21.Das A, Stöckelhuber KW, Jurk R, Saphiannikova M, Fritzsche J, Lorenz H, Klüppel M, Heinrich G (2008) Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends. Polymer 49:5276–5283CrossRef
    22.Lorenz H, Fritzsche J, Das A, Stöckelhuber KW, Jurk R, Heinrich G, Klüppel M (2009) Advanced elastomer nano-composites based on CNT-hybrid filler systems. Compos Sci Technol 69:2135–2143CrossRef
    23.Fritzsche J, Lorenz H, Klüppel M (2009) CNT based elastomer-hybrid-nanocomposites with promising mechanical and electrical properties. Macromol Mater Eng 295:551–560CrossRef
    24.Das A, Stöckelhuber KW, Jurk R, Fritzsche J, Klüppel M, Heinrich G (2009) Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes. Carbon 47:3313–3321CrossRef
    25.Fritzsche J, Lorenz H, Klüppel M (2011) Elastomer carbon nanotube composites. In: McNally T, Pötschke P (eds) Polymer carbon nanotube composites: preparation, properties and applications. Woodhead, Cambridge
    26.Subramaniam K, Das A, Steinhauser D, Klüppel M, Heinrich G (2011) Effect of ionic liquid on dielectric, mechanical and dynamic mechanical properties of multi-walled carbon nanotubes/polychloroprene rubber composites. Eur Polym J 47:2234–2243CrossRef
    27.Patole AS, Patole SP, Jung SY, Yoo JB, An JH, Kim TH (2012) Eur Polym J 48:252
    28.Wang L, Zhang L, Tian M (2012) Wear 276–277:85–93
    29.Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Polymer 52:5–25
    30.Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Prog Polym Sci 35:1350
    31.Nawaz K, Khan U, Ul-Haq N, May P, O'Neill A (2012) Carbon 50:4489
    32.Potts JR, Shankar O, Du L, Ruoff RS (2012) Macromolecules 45:6045
    33.Kim H, Abdala AA, Macosko CW (2010) Macromolecules 43:6515
    34.Varghese T, Kumar V, Ajith H et al (2013) Reinforcement of acrylonitrile butadiene rubber using pristine few layer graphene and its hybrid fillers. Carbon 61:476–486CrossRef
    35.Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240
    36.Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924
    37.Schröder A, Klüppel M, Schuster RH, Heidberg J (2001) Energetic surface structure of carbon black. Kautsch Gummi Kunstst 54:260–266
    38.Schröder A, Klüppel M, Schuster RH, Heidberg J (2002) Surface energy distribution of carbon black measured by static gas adsorption. Carbon 40:207–210CrossRef
    39.Schröder A, Klüppel M, Schuster RH (2007) Characterization of surface activity of carbon blacks and its relation to polymer-filler interaction. Macromol Mater Eng 292:885–916CrossRef
    40.Jaroniec M (1988) Physical adsorption on heterogeneous solids. Elsevier, Amsterdam
    41.Stanley BJ, Guiochon G (1993) J Phys Chem 97:8098–8104
    42.Schröder A, Klüppel M, Schuster RH (1999) Kautsch Gummi Kunstst 52:814
    43.Schröder A, Klüppel M, Schuster RH (2000) Kautsch Gummi Kunstst 53:257
    44.Schröder A, Meier J, Klüppel M, Schuster RH (2003) Gummi Fasern Kunststoffe 56:162
    45.Pfeifer P, Obert M, Cole MW (1989) Fractal BET and FHH theories of adsorption: a comparative study. Proc R Soc Lond A 423:169–188CrossRef
    46.Heinrich G, Klüppel M (2002) Recent advances in the theory of filler networking in elastomers. Adv Polym Sci 160:1–44CrossRef
    47.Klüppel M, Schramm J (2000) A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromol Theory Simul 9:742–754
    48.Lorenz H, Klüppel M (2012) Microstructure-based modeling of arbitrary deformation histories of filler-reinforced elastomers. J Mech Phys Solids 60:1842–1861CrossRef
    49.Lorenz H, Klüppel M, Heinrich G (2012) Micro-structure based modeling and FE-implementation of filler-induced stress softening and hysteresis of reinforced rubbers. Z Angew Math Mech 92:608–631CrossRef
    50.Meier JG, Klüppel M (2008) Macromol Mater Eng 293:12–38
    51.Meier JG, Mani JW, Klüppel M (2007) Phys Rev B 75:054202
    52.Persson BNJ (2001) J Phys Condens Matter 115:3840
    53.Klüppel M, Heinrich G (2000) Rubber friction on self-affine road tracks. Rubber Chem Technol 73:578–606CrossRef
    54.Heinrich G (1997) Hysteresis friction of sliding rubbers on rough and fractal surfaces. Rubber Chem Technol 70:1CrossRef
    55.Heinrich G, Klüppel M, Vilgis TA (2000) Evaluation of self-affine surfaces and their implication to frictional dynamics as illustrated with a rouse material. Comput Theor Polym Sci 10:53–61CrossRef
    56.Müller A, Schramm J, Klüppel M (2002) Ein neues Modell der Hysteresereibung von Elastomeren auf fraktalen Oberflächen. Kautsch Gummi Kunstst 55:432–436
    57.Schramm J (2002) Reibung von Elastomeren auf rauen Oberflächen und Beschreibung von Nassbremseigenschaften von PKW-Reifen. PhD Thesis, University of Regensburg
    58.Le Gal A, Guy L, Orange G, Bomal Y, Klüppel M (2008) Modelling of sliding friction for carbon black and silica filled elastomers on road tracks. Wear 264:606–615CrossRef
    59.Le Gal A, Klüppel M (2006) Investigation and modelling of adhesion friction on rough surfaces. Kautsch Gummi Kunstst 59:308–315
    60.Le Gal A, Yang X, Klüppel M (2005) Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis. J Chem Phys 123:014704CrossRef
    61.Le Gal A (2007) Investigation and modelling of rubber stationary friction on rough surfaces. PhD Thesis, University of Hannover
    62.Le Gal A, Klüppel M (2008) Investigation and modelling of rubber stationary friction on rough surfaces. J Phys Condens Matter 20:015007CrossRef
    63.Busse L, Le Gal A, Klüppel M (2010) Modeling of wet and dry friction of silica filled elastomers on sef-affine road surfaces, Chapter 1. In: Besdo D, Heimann B, Klüppel M, Kröger M, Wriggers P, Nackenhorst U (eds) Elastomere friction: theory, experiment and simulation, vol 51, Lecture notes in applied and computational mechanics. Springer, Berlin, Heidelberg, New York. ISBN 978-3-642-10656-9CrossRef
    64.Busse L, Klüppel M (2010) Wet and dry friction of elastomers in advanced simulation compared to experiment. In: Heinrich G, Kaliske M, Lion A, Reese S (eds) Constitutive models for rubber VI. A. A. Balkema, Lisse, Abingdon, Exton, Tokyo. ISBN 979-0-415-56327-7
    65.Busse L, Bourbakri I, Klüppel M (2011) Friction master curves for rubber on dry and wet granite: experiments and simulations. Kautsch Gummi Kunstst 64(5):35–39
    66.Busse L (2012) Investigation, prediction and control of rubber friction and stick–slip: experiments, simulations, applications. PhD Thesis, University of Hannover
    67.Lang A, Klüppel M (2013) Hysteresis and adhesion friction of carbon based elastomer composites: theory, experiments and applications. In: Gil-Negrete N, Alonso A (eds) Constitutive models for rubber VIII. Taylor and Francis Group, London, pp 59–64. ISBN 978-1-138-00072-8CrossRef
    68.Heinrich G, Klüppel M (2002) Elastomer friction and adhesion on self-affine interfaces. Theory, experiment and applications in tire industry. In: Proceedings of the IPF-Colloquium, Dresden, 14–15 November 2002
    69.Heinrich G, Schramm J, Müller A, Klüppel M, Kendziorra N, Kelbch S (2002) Zum Einfluss der Straßenoberfläche auf das Bremsverhalten von PKW-Reifen beim ABS-nass und ABS-trocken Bremsvorgang. In: Proceedings of the 4 Darmstädter Reifenkolloquium, Darmstadt, 17 October 2002
    70.Heinrich G, Klüppel M (2008) Rubber friction, tread deformation and tire traction. Wear 265:1052–1060CrossRef
    71.Williams ML, Ferry JD (1953) J Polym Sci 11:169CrossRef
  • 作者单位:M. Klüppel (22)
    M. M. Möwes (22)
    A. Lang (22)
    J. Plagge (22)
    M. Wunde (22)
    F. Fleck (22)
    C. W. Karl (22)

    22. Deutsches Institut für Kautschuktechnologie e.V., Eupener Str. 33, 30519, Hannover, Germany
  • 丛书名:Designing of Elastomer Nanocomposites: From Theory to Applications
  • ISBN:978-3-319-47696-4
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-5030
  • 卷排序:275
文摘
The physical performance of elastomer composites based on graphene nanoplatelets (GNPs) was investigated regarding the mechanical and fracture mechanical properties, viscoelastic and dielectric responses, and friction, wear and gas permeation properties. Static gas-adsorption measurements at very low pressures demonstrated that pronounced differences in the surface activity and specific surface area can be observed for different GNPs. The surface activity was shown to be large for GNPs that indicate strong polymer–filler couplings for these systems. This is closely related to the energetic heterogeneity (i.e., the number of highly energetic sites) at the filler surface, which determines the polymer–filler interaction strength and is the main factor determining the reinforcing potential. Based on this information, the stress–strain responses of several GNP types and fine graphite were analyzed in styrene butadiene rubber (SBR) and nitrile butadiene rubber (NBR) with and without softener in relation to standard carbon black. Results demonstrated qualitatively different mechanical behaviors. It was revealed that the mechanical response of the composites under quasistatic cyclic loading can be well understood on the basis of quantitative analysis using a micromechanical model. Gas permeation is strongly reduced by GNPs and further reduced in anisotropic samples with orientation of GNPs perpendicular to the gas flow direction. In comparison with carbon black, dynamic crack growth under pulsed excitation remains almost unaltered for all GNP types, although the wear behavior under sharp abrading conditions is worse. The dry and wet friction properties of SBR composites are well described by hysteresis and adhesion friction theory for GNPs and for carbon black. The dry friction coefficient on rough granite and especially on smooth glass decreases significantly when GNPs are used instead of carbon black. However, the wet friction coefficient on rough granite increases slightly at small sliding velocities, which correlates with the higher hysteresis of GNP composites in the rubbery plateau region.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700