Frequency and Temperature Dependence of Dielectric and Electrical Properties of Sn-Doped Lead Calcium Iron Niobate
详细信息    查看全文
  • 作者:Maalti Puri ; Shalini Bahel ; Sukhleen Bindra Narang
  • 关键词:Relative permittivity ; loss tangent ; temperature coefficient of relative permittivity ; impedance ; modulus ; activation energy
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:45
  • 期:2
  • 页码:959-969
  • 全文大小:2,783 KB
  • 参考文献:1.J. Kato, H. Kagata, and K. Nishimoto, Jpn. J. Appl. Phys. 31, 3155 (1992).
    2.I.P. Raevski, S.P. Kubrina, S.I. Raevskaya, V.V. Titov, S.A. Prosandeeva, D.A. Sarycheva, M.A. Malitskaya, V.V. Stashenko, and I.N. Zakharchenkoa, Ferroelectrics 398, 16 (2010).CrossRef
    3.E.S. Kim, Y.H. Kim, K.H. Yoon, D.H. Kim, and Y. Kim, Ferroelectrics 262, 275 (2001).CrossRef
    4.Q.H. Yang, E.S. Kim, and X. Jun, Mater. Sci. Eng. B 113, 224 (2002).CrossRef
    5.M. Hu, D. Zhou, D. Zhang, W. Lu, B. Li, J. Huang, and S. Gong, Mater. Sci. Eng. B 99, 403 (2003).CrossRef
    6.K.H. Yoon, E.S. Kim, and J.S. Jeon, J. Eur. Ceram. Soc. 23, 2391 (2003).CrossRef
    7.S. Kucheiko, J.-W. Choi, H.-J. Kim, S.-J. Yoon, and H.J. Jung, J. Am. Ceram. Soc. 80, 2937 (1997).CrossRef
    8.Q. Yang, E.S. Kim, J. Xu, and Z. Meng, Mater. Sci. Eng. B 99, 332 (2003).CrossRef
    9.Q.H. Yang, E.S. Kim, X. Jun, and Z. Meng, Mater. Sci. Eng. B 99, 259 (2003).CrossRef
    10.E.S. Kim, J.S. Jeon, and K.H. Yoon, J. Eur. Ceram. Soc. 23, 2583 (2003).CrossRef
    11.A.L. Patterson, Phys. Rev. 56, 978 (1939).CrossRef
    12.C.Y. Kang, J.W. Choi, S.J. Yoon, and H.J. Kim, J. Mater. Sci. Mater. Electron. 10, 661 (1999).CrossRef
    13.C. Ang and Z. Yu, Phys. Rev. B 61, 957 (2000).CrossRef
    14.G. Goodman, R.C. Buchanan, and T.G. Reynolds, Ceramic Materials for Electronics; Processing, Properties and Applications (New York: Marcel Dekker, 1991), p. 32.
    15.I.P. Raevski, S.A. Kuropatkina, S.P. Kubrin, S.I. RaevskayaI, V.V. Titov, D.A. Sarychev, M.A. Malitskaya, A.S. Bogatin, and I.N. Zakharchenko, Ferroelectrics 379, 48 (2009).CrossRef
    16.S. Saha and T.P. Sinha, Phys. Rev. B 65, 134103 (2002).CrossRef
    17.P.Q. Mantus, J. Eur. Ceram. Soc. 19, 2079 (1999).CrossRef
    18.W. Chen, W. Zhu, O.K. Tan, and X.F. Chen, J. Appl. Phys. 108, 034101 (2010).CrossRef
    19.N. Ponpandian and A. Narayanasamy, J. Appl. Phys. 92, 2770 (2002).CrossRef
    20.K. Subrat and P. Kumar, Process. Appl. Ceram. 7, 181 (2013).
    21.A. Belboukhari, Z. Abkhar, Y. Gagou, J. Belhadi, R. Elmoznine, D. Mezzane, M. Marssi, and I. Lukyanchuk, Eur. Phys. J. B 85, 215 (2012).CrossRef
    22.M.M. Costa, G.F.M. Pires, A.J. Terezo, M.P.F. Graca, and A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011).CrossRef
    23.N.K. Singh, P. Kumar, A.K. Sharma, and R.N.P. Choudhary, Mater. Sci. Appl. 2, 1593 (2011).
    24.Priyanka and A.K. Jha, Bull. Mater. Sci. 36, 135 (2013).CrossRef
    25.T.M. Clark and B.J. Evans, IEEE Trans. Magn. 33, 3745 (1997).CrossRef
    26.A. Kumar, B.P. Singh, R.N.P. Choudhary, and A.K. Thakur, Mater. Chem. Phys. 99, 150 (2006).CrossRef
    27.B. Behera, P. Nayak, and R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007).CrossRef
    28.J. Plocharski and W. Wieczoreck, Solid State Ionics 28–30, 979 (1988).CrossRef
    29.R.S.T.M. Sohn, A.A.M. Macedo, M.M. Costa, S.E. Mazzetto, and A.S.B. Sombra, Phys. Scr. 82, 055702 (2010).CrossRef
    30.Y. Yang, S.T. Zhang, H.B. Huang, Y.F. Chen, Z.G. Liu, and J.M. Liu, Mater. Lett. 59, 1767 (2005).CrossRef
    31.G.C. Kuezynski, N.A. Hooton, and C.F. Gibbon, Sintering and Related Phenomena (New York: Gordon and Breach Science, 1967), p. 65.
    32.S.B. Majumder, S. Bhattacharya, and R.S. Katiyar, J. Appl. Phys. 99, 024108 (2006).CrossRef
    33.D. Varsheny, R.N.P. Choudhary, C. Rinaldi, and R.S. Katiyar, Appl. Phys. A 89, 793 (2007).CrossRef
    34.I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, and L. Jastrabik, J. Appl. Phys. 93, 4130 (2003).CrossRef
    35.A.A. Bokov, L.A. Shpak, and I.P. Rayevsky, J. Phys. Chem. Solids 54, 495 (1993).CrossRef
    36.D. Bochenek, P. Kruk, R. Skulski, and P. Wawrzala, J. Electroceram. 26, 8 (2011).CrossRef
  • 作者单位:Maalti Puri (1)
    Shalini Bahel (1)
    Sukhleen Bindra Narang (1)

    1. Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
Sn-substituted lead calcium iron niobate specimens with general formula (Pb0.45Ca0.55)(Fe0.5Nb0.5)1−y Sn y O3 with 0.00 ≤ y ≤ 0.15 in steps of 0.03 have been synthesized using a two-stage method. The x-ray diffraction patterns for all the synthesized samples reveal a perovskite structure with pseudocubic symmetry. A small amount of pyrochlore phase was obtained along with the perovskite phase, decreasing with increasing Sn content up to y = 0.09. The temperature and frequency dependence of the dielectric and electrical properties of Sn-substituted lead calcium iron niobate were studied. Two dielectric anomalies were observed in ε rT plots for all the samples due to generation of oxygen vacancies. The temperature coefficient of relative permittivity, τ ε , decreased with increasing Sn content. The single, semicircular arc observed in Nyquist plots suggests a single relaxation process. The activation energies obtained from the temperature dependence of the relaxation time and grain resistance were found to be approximately comparable. Keywords Relative permittivity loss tangent temperature coefficient of relative permittivity impedance modulus activation energy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700