Near-Ambient Pressure XPS of High-Temperature Surface Chemistry in Sr2Co2O5 Thin Films
详细信息    查看全文
  • 作者:Wesley T. Hong ; Kelsey A. Stoerzinger ; Ethan J. Crumlin ; Eva Mutoro…
  • 关键词:Ambient pressure XPS ; Strontium cobaltite ; Solid oxide fuel cells ; Oxygen reduction ; Electrocatalysis
  • 刊名:Topics in Catalysis
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:59
  • 期:5-7
  • 页码:574-582
  • 全文大小:1,738 KB
  • 参考文献:1.Adler SB (2004) Chem Rev 104:4791–4843CrossRef
    2.Chueh WC, Haile SM (2012) Annu Rev Chem Biomol Eng 3:313–341CrossRef
    3.Crumlin EJ, Mutoro E, Ahn SJ, la O’ GJ, Borisevich A, Biegalski MD, Christen HM, Shao-Horn Y (2010) J Phys Chem Lett 1:3149–3155CrossRef
    4.Mutoro E, Crumlin EJ, Biegalski MD, Christen HM, Shao-Horn Y (2011) Energy Environ Sci 4:3689CrossRef
    5.Lee W, Han JW, Chen Y, Cai Z, Yildiz B (2013) J Am Chem Soc 135:7909–7925CrossRef
    6.Ding H, Virkar AV, Liu M, Liu F (2013) Phys Chem Chem Phys 15:489–496CrossRef
    7.Druce J, Tellez H, Burriel M, Sharp MD, Fawcett LJ, Cook SN, McPhail DS, Ishihara T, Brongersma HH, Kilner JA (2014) Energy Environ Sci 7:3593–3599CrossRef
    8.Cai Z, Kubicek M, Fleig J, Yildiz B (2012) Chem Mater 24:1116–1127CrossRef
    9.laO’ GJ, Ahn SJ, Crumlin E, Orikasa Y, Biegalski MD, Christen HM, Shao-Horn Y (2010) Angew Chem Int Ed Engl 49:5344–5347CrossRef
    10.Crumlin EJ, Mutoro E, Liu Z, Grass ME, Biegalski MD, Lee Y-L, Morgan D, Christen HM, Bluhm H, Shao-Horn Y (2012) Energy Environ Sci 5:6081CrossRef
    11.Crumlin EJ, Ahn SJ, Lee D, Mutoro E, Biegalski MD, Christen HM, Shao-Horn Y (2012) J Electrochem Soc 159:F219–F225CrossRef
    12.Jeen H, Bi Z, Choi WS, Chisholm MF, Bridges CA, Paranthaman MP, Lee HN (2013) Adv Mater 25:6459–6463CrossRef
    13.Ogletree DF, Bluhm H, Lebedev G, Fadley CS, Hussain Z, Salmeron M (2002) Rev Sci Instrum 73:3872CrossRef
    14.Crumlin EJ, Mutoro E, Hong WT, Biegalski MD, Christen HM, Liu Z, Bluhm H, Shao-Horn Y (2013) J Phys Chem C 117:16087–16094CrossRef
    15.PAW van der Heide (2002) Surf Interface Anal 33:414–425CrossRef
    16.Dulli H, Dowben PA, Liou S-H, Plummer EW (2000) Phys Rev B 62:14629–14632CrossRef
    17.Kubicek M, Limbeck A, Frömling T, Hutter H, Fleig J (2011) J Electrochem Soc 158:B727CrossRef
    18.Feng Z, Yacoby Y, Hong WT, Zhou H, Biegalski MD, Christen HM, Shao-Horn Y (2014) Energy Environ Sci 7:1166CrossRef
    19.CD Wagner, AV Naumkin, A Kraut-Vass, JW Allison, CJ Powell, JR Rumble (2003) NIST Standard Reference Database 20. NIST XPS Database Version 3:251–252
    20.Mutoro E, Crumlin EJ, Pöpke H, Luerssen B, Amati M, Abyaneh MK, Biegalski MD, Christen HM, Gregoratti L, Janek J, Shao-Horn Y (2012) J Phys Chem Lett 3:40–44CrossRef
    21.Jeen H, Choi WS, Biegalski MD, Folkman CM, Tung I-C, Fong DD, Freeland JW, Shin D, Ohta H, Chisholm MF, Lee HN (2013) Nat Mater 12:1057–1063CrossRef
    22.Nemudry A, Rudolf P, Schollhorn R (1996) Chem Mater 8:2232–2238CrossRef
    23.Muñoz A, delaCalle C, Alonso JA, Botta PM, Pardo V, Baldomir D, Rivas J (2008) Phys Rev B 78:054404CrossRef
    24.Frank Ogletree D, Bluhm H, Hebenstreit ED, Salmeron M (2009) Nucl Instrum Methods Phys Res Sect A 601:151–160CrossRef
    25.Whaley JA, McDaniel AH, El Gabaly F, Farrow RL, Grass ME, Hussain Z, Liu Z, Linne MA, Bluhm H, McCarty KF (2010) Rev Sci Instrum 81:086104CrossRef
    26.Wang P, Yao L, Wang M, Wu W (2000) J Alloys Compd 311:53–56CrossRef
    27.Gries WH (1996) Surf Interface Anal 24:38–50CrossRef
    28.de la Calle C, Aguadero A, Alonso JA, Fernández-Díaz MT (2008) Solid State Sci 10:1924–1935CrossRef
    29.Stoerzinger KA, Hong WT, Crumlin EJ, Bluhm H, Biegalski MD, Shao-Horn Y (2014) J Phys Chem C 118:19733–19741CrossRef
    30.Bocquet AE, Mizokawa T, Saitoh T, Namatame H, Fujimori A (1992) Phys Rev B 46:3771–3784CrossRef
    31.Zaanen J, Sawatzky GA (1990) J Solid State Chem 88:8–27CrossRef
    32.Torrance JB, Lacorre P (1991) Physica C (Amsterdam) 182:351–364CrossRef
    33.Pavone M, Ritzmann AM, Carter EA (2011) Energy Environ Sci 4:4933CrossRef
    34.Mueller DN, Machala ML, Bluhm H, Chueh WC (2015) Nat Commun 6:6097CrossRef
    35.Adler S, Chen X, Wilson J (2007) J Catal 245:91–109CrossRef
    36.Lee Y-L, Kleis J, Rossmeisl J, Shao-Horn Y, Morgan D (2011) Energy Environ Sci 4:3966CrossRef
    37.Vashook VV, Zinkevich MV, Ullmann H, Paulsen J, Trofimenko N, Teske K (1997) Solid State Ion 99:23–32CrossRef
    38.ten Elshof JE, Lankhorst MHR, Bouwmeester HJM (1997) Solid State Ion 99:15–22CrossRef
    39.Wang L, Merkle R, Maier J, Acartürk T, Starke U (2009) Appl Phys Lett 94:071908CrossRef
  • 作者单位:Wesley T. Hong (1)
    Kelsey A. Stoerzinger (1)
    Ethan J. Crumlin (2)
    Eva Mutoro (3)
    Hyoungjeen Jeen (4) (5)
    Ho Nyung Lee (4)
    Yang Shao-Horn (1) (6)

    1. Department of Materials Science Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
    2. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
    3. BASF SE, Ludwigshafen am Rhein, Germany
    4. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
    5. Department of Physics, Pusan National University, Busan, Korea
    6. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
  • 刊物主题:Catalysis; Physical Chemistry; Pharmacy; Industrial Chemistry/Chemical Engineering; Characterization and Evaluation of Materials;
  • 出版者:Springer US
  • ISSN:1572-9028
文摘
Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr2Co2O5 (SCO) epitaxial thin films with different crystallographic orientations. Detailed analysis of the Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La0.8Sr0.2CoO3−δ thin films by SCO surface particles observed previously.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700