Patterns of laccase and peroxidases in coarse woody debris of Fagus sylvatica, Picea abies and Pinus sylvestris and their relation to different wood parameters
详细信息    查看全文
  • 作者:Tobias Arnstadt ; Björn Hoppe ; Tiemo Kahl…
  • 关键词:Laccase ; Manganese peroxidase ; General peroxidase ; Dead wood ; Lignin ; Wood rot
  • 刊名:European Journal of Forest Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:135
  • 期:1
  • 页码:109-124
  • 全文大小:677 KB
  • 参考文献:Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91. doi:10.​1016/​S0141-0229(02)00245-4 CrossRef
    Baldrian P (2004) Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol Ecol 50:245–253. doi:10.​1016/​j.​femsec.​2004.​07.​005 PubMed CrossRef
    Baldrian P (2006) Fungal laccases-occurrence and properties. FEMS Microbiol Rev 30:215–242. doi:10.​1111/​j.​1574-4976.​2005.​00010.​x PubMed CrossRef
    Bartoń K (2015) Multi-model inference R package version 1.13.4
    Bates D, Maechler M, Bolker B, Walker S (2014) Linear mixed-effects models using Eigen and S4. R package version 1.0-6  https://​cran.​r-project.​org/​web/​packages/​lme4/​index.​html
    Boddy L (1983) Carbon dioxide release from decomposing wood: effect of water content and temperature. Soil Biol Biochem 15:501–510. doi:10.​1016/​0038-0717(83)90042-1 CrossRef
    Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31:185–194. doi:10.​1111/​j.​1574-6941.​2000.​tb00683.​x PubMed CrossRef
    Boddy L (2001) Fungal community ecology and wood decomposition processes in angiosperms: from standing tree to complete decay of coarse woody debris. In: Jonsson BG, Kruys N (eds) Ecology of woody debris in boreal forests, vol 49. Ecological Bulletins. Wiley-Blackwell, London, pp 43–56
    Boddy L, Owens EM, Chapela IH (1989) Small scale variation in decay rate within logs one year after felling: effect of fungal community structure and moisture content. FEMS Microbiol Lett 62:173–183. doi:10.​1111/​j.​1574-6968.​1989.​tb03691.​x CrossRef
    Bollag JM, Shuttleworth KL, Anderson DH (1988) Laccase-mediated detoxification of phenolic compounds. Appl Environ Microbiol 54:3086–3091PubMed PubMedCentral
    Brown JA, Glenn JK, Gold MH (1990) Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriol 172:3125–3130PubMed PubMedCentral
    Camarero S, Bockle B, Martinez MJ, Martinez AT (1996) Manganese-mediated lignin degradation by Pleurotus pulmonarius. Appl Environ Microbiol 62:1070–1072PubMed PubMedCentral
    Chambers JQ, Schimel JP, Nobre AD (2001) Respiration from coarse wood litter in central Amazon forests. Biogeochemistry 52:115–131. doi:10.​1023/​a:​1006473530673 CrossRef
    Crawley MJ (2012) Binary response variables. In: The R book. Wiley, pp 650–665. doi:10.​1002/​9781118448908.​ch17
    Dence CW (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 33–61CrossRef
    Dix NJ, Webster J (1994) Fungal ecology. Springer-Science + Business Media B.V., Wallington
    Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190. doi:10.​1126/​science.​263.​5144.​185 PubMed CrossRef
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
    Dutton MV, Evans CS, Atkey PT, Wood DA (1993) Oxalate production by Basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 39:5–10. doi:10.​1007/​bf00166839 CrossRef
    Effland MJ (1977) Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi 60:143–144
    Fackler K, Gradinger C, Hinterstoisser B, Messner K, Schwanninger M (2006) Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme Microb Technol 39:1476–1483. doi:10.​1016/​j.​enzmictec.​2006.​03.​043 CrossRef
    FAO (2010) Global forest resources assessment 2010 main report. Food and Agriculture Organization of the United Nations, Rome
    Fengel D, Wegener G (2003) Wood: chemistry, ultrastructure, reactions. Kessel Verlag, Remagen
    Fischer M et al (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485. doi:10.​1016/​j.​baae.​2010.​07.​009 CrossRef
    Fukami T et al (2010) Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–684. doi:10.​1111/​j.​1461-0248.​2010.​01465.​x PubMed CrossRef
    Fukasawa Y, Osono T, Takeda H (2005) Small-scale variation in chemical property within logs of Japanese beech in relation to spatial distribution and decay ability of fungi. Mycoscience 46:209–214. doi:10.​1007/​s10267-005-0236-x CrossRef
    Fukasawa Y, Osono T, Takeda H (2009a) Dynamics of physicochemical properties and occurrence of fungal fruit bodies during decomposition of coarse woody debris of Fagus crenata. J For Res 14:20–29. doi:10.​1007/​s10310-008-0098-0 CrossRef
    Fukasawa Y, Osono T, Takeda H (2009b) Effects of attack of saprobic fungi on twig litter decomposition by endophytic fungi. Ecol Res 24:1067–1073. doi:10.​1007/​s11284-009-0582-9 CrossRef
    Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.​1111/​j.​1365-294X.​1993.​tb00005.​x PubMed CrossRef
    Hagemann U, Moroni MT, Gleißner J, Makeschin F (2010) Disturbance history influences downed woody debris and soil respiration. For Ecol Manag 260:1762–1772. doi:10.​1016/​j.​foreco.​2010.​08.​018 CrossRef
    Hahn F, Ullrich R, Hofrichter M, Liers C (2013) Experimental approach to follow the spatiotemporal wood degradation in fungal microcosms. Biotechnol J 8:127–132. doi:10.​1002/​biot.​201200183 PubMed CrossRef
    Hatakka A, Hammel KE (2011) Fungal biodegradation of lignocelluloses. In: Hofrichter M (ed) Industrial applications, vol 10. The Mycota. Springer, Berlin, pp 319–340. doi:10.​1007/​978-3-642-11458-8_​15 CrossRef
    Herrmann S, Bauhus J (2013) Effects of moisture, temperature and decomposition stage on respirational carbon loss from coarse woody debris (CWD) of important European tree species. Scand J For Res 28:346–357. doi:10.​1080/​02827581.​2012.​747622 CrossRef
    Hessenmöller D, Nieschulze J, Seele C, von Lüpke N, Schulze E-D (2011) Identification of forest management types from ground-based and remotely sensed variables and the effects of forest. Forstarchiv 82:171–183. doi:10.​4432/​03004112-82-171
    Hiscox J, Baldrian P, Rogers HJ, Boddy L (2010) Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genet Biol 47:562–571. doi:10.​1016/​j.​fgb.​2010.​03.​007 PubMed CrossRef
    Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466. doi:10.​1016/​S0141-0229(01)00528-2 CrossRef
    Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 19:116–125. doi:10.​1016/​j.​cbpa.​2014.​01.​015 PubMed CrossRef
    Hofrichter M, Vares T, Kalsi M, Galkin S, Scheibner K, Fritsche W, Hatakka A (1999) Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma frowardii. Appl Environ Microbiol 65:1864–1870PubMed PubMedCentral
    Hofrichter M, Lundell T, Hatakka A (2001) Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Appl Environ Microbiol 67:4588–4593. doi:10.​1128/​AEM.​67.​10.​4588-4593.​2001 PubMed PubMedCentral CrossRef
    Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897. doi:10.​1007/​s00253-010-2633-0 PubMed CrossRef
    Hoppe B, Kahl T, Karasch P, Wubet T, Bauhus J, Buscot F, Krüger D (2014) Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi. PLoS ONE 9:e88141. doi:10.​1371/​journal.​pone.​0088141 PubMed PubMedCentral CrossRef
    Huffman DL, O’Halloran TV (2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70:677–701. doi:10.​1146/​annurev.​biochem.​70.​1.​677 PubMed CrossRef
    Kapich A, Hofrichter M, Vares T, Hatakka A (1999) Coupling of manganese peroxidase-mediated lipid peroxidation with destruction of nonphenolic lignin model compounds and 14C-labeled lignins. Biochem Biophys Res Commun 259:212–219. doi:10.​1006/​bbrc.​1999.​0742 PubMed CrossRef
    Kellner H et al (2014) Widespread occurrence of expressed fungal secretory peroxidases in forest soils. PLoS ONE 9:e95557. doi:10.​1371/​journal.​pone.​0095557 PubMed PubMedCentral CrossRef
    Kirk T (1984) Degradation of lignin. In: Gibson DT (ed) Microbial degradation of organic compounds, vol 13. Microbiology series. Marcel Dekker, New York, pp 399–437
    Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–307
    Kjalke M, Andersen MB, Schneider P, Christensen B, Schülein M, Welinder KG (1992) Comparison of structure and activities of peroxidases from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus. Biochim Biophys Acta 1120:248–256. doi:10.​1016/​0167-4838(92)90244-8 PubMed CrossRef
    Lackner R, Srebotnik E, Messner K (1991) Oxidative degradation of high molecular weight chlorolignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 178:1092–1098. doi:10.​1016/​0006-291X(91)91004-V PubMed CrossRef
    Lefcheck J (2014) R2 for linear mixed effects models. http://​jonlefcheck.​net/​2013/​03/​13/​r2-for-linear-mixed-effects-models/​ . Accessed 6 October 2014
    Leonowicz A et al (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227. doi:10.​1002/​1521-4028(200107)41:​3/​4<185:​AID-JOBM185>3.​0.​CO;2-T PubMed CrossRef
    Levin L, Forchiassin F, Viale A (2005) Ligninolytic enzyme production and dye decolorization by Trametes trogii: application of the Plackett–Burman experimental design to evaluate nutritional requirements. Process Biochem 40:1381–1387. doi:10.​1016/​j.​procbio.​2004.​06.​005 CrossRef
    Liers C, Ullrich R, Steffen KT, Hatakka A, Hofrichter M (2006) Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl Microbiol Biotechnol 69:573–579. doi:10.​1007/​s00253-005-0010-1 PubMed CrossRef
    Liers C, Arnstadt T, Ullrich R, Hofrichter M (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78:91–102. doi:10.​1111/​j.​1574-6941.​2011.​01144.​x PubMed CrossRef
    Liu W, Bryant D, Hutyra L, Saleska S, Hammond-Pyle E, Curran D, Wofsy S (2006) Woody debris contribution to the carbon budget of selectively logged and maturing mid-latitude forests. Oecologia 148:108–117. doi:10.​1007/​s00442-006-0356-9 PubMed CrossRef
    Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20. doi:10.​1002/​jobm.​200900338 PubMed CrossRef
    Lundell TK, Mäkelä MR, de Vries RP, Hildén KS (2014) Chapter eleven—genomics, lifestyles and future prospects of wood-decay and litter-decomposing basidiomycota. In: Francis MM (ed) Advances in botanical research, vol 70. Academic Press, London, pp 329–370. doi:10.​1016/​B978-0-12-397940-7.​00011-2
    Luyssaert S, Hessenmöller D, von Lüpke N, Kaiser S, Schulze ED (2011) Quantifying land use and disturbance intensity in forestry, based on the self-thinning relationship. Ecol Appl 21:3272–3284. doi:10.​1890/​10-2395.​1 CrossRef
    Mäkelä MR, Lundell T, Hatakka A, Hildén K (2013) Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata. Fungal Biol 117:62–70. doi:10.​1016/​j.​funbio.​2012.​11.​006 PubMed CrossRef
    Morais H, Ramos C, Forgács E, Cserháti T, Oliviera J (2002) Using spectrophotometry and spectral mapping technique for the study of the production of manganese-dependent and manganese-independent peroxidases by Pleurotus ostreatus. J Biochem Biophys Methods 50:99–109. doi:10.​1016/​S0165-022X(01)00169-5 PubMed CrossRef
    Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi:10.​1111/​j.​2041-210x.​2012.​00261.​x CrossRef
    Oksanen J et al (2013) vegan: community ecology package. R package version 2.0-10 https://​cran.​r-project.​org/​package=​vegan
    Philpott CC (2006) Iron uptake in fungi: a system for every source. Biochim Biophys Acta 1763:636–645. doi:10.​1016/​j.​bbamcr.​2006.​05.​008 PubMed CrossRef
    Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-113
    Progar RA, Schowalter TD, Freitag CM, Morrell JJ (2000) Respiration from coarse woody debris as affected by moisture and saprotroph functional diversity in Western Oregon. Oecologia 124:426–431. doi:10.​1007/​pl00008868 CrossRef
    Purahong W, Krüger D (2012) A better understanding of functional roles of fungi in the decomposition process: using precursor rRNA containing ITS regions as a marker for the active fungal community. Ann For Sci 69:659–662. doi:10.​1007/​s13595-012-0210-7 CrossRef
    Purahong W et al (2014) Changes within a single land-use category alter microbial diversity and community structure: molecular evidence from wood-inhabiting fungi in forest ecosystems. J Environ Manag 139:109–119. doi:10.​1016/​j.​jenvman.​2014.​02.​031 CrossRef
    R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://​www.​R-project.​org/​
    Rajala T, Peltoniemi M, Pennanen T, Mäkipää R (2012) Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol Ecol 81:494–505. doi:10.​1111/​j.​1574-6941.​2012.​01376.​x PubMed CrossRef
    Ramette A (2009) Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Appl Environ Microbiol 75:2495–2505. doi:10.​1128/​aem.​02409-08 PubMed PubMedCentral CrossRef
    Ranjard L, Poly F, Lata J-C, Mougel C, Thioulouse J, Nazaret S (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67:4479–4487. doi:10.​1128/​aem.​67.​10.​4479-4487.​2001 PubMed PubMedCentral CrossRef
    Ruiz-Dueñas FJ, Martínez ÁT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177. doi:10.​1111/​j.​1751-7915.​2008.​00078.​x PubMed PubMedCentral CrossRef
    Ryvarden L, Gilbertson RL (1993) European polypores Part 1. Fungiflora. Lubrecht & Cramer, Oslo
    Sanglimsuwan S, Yoshida N, Morinaga T, Murooka Y (1993) Resistance to and uptake of heavy metals in mushrooms. J Ferment Bioeng 75:112–114. doi:10.​1016/​0922-338X(93)90220-3 CrossRef
    Schwarze FWMR (2007) Wood decay under the microscope. Fungal Biol Rev 21:133–170. doi:10.​1016/​j.​fbr.​2007.​09.​001 CrossRef
    Shimada M, Akamtsu Y, Tokimatsu T, Mii K, Hattori T (1997) Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. J Biotechnol 53:103–113. doi:10.​1016/​S0168-1656(97)01679-9 CrossRef
    Šnajdr J, Dobiášová P, Větrovský T, Valášková V, Alawi A, Boddy L, Baldrian P (2011) Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil. FEMS Microbiol Ecol 78:80–90. doi:10.​1111/​j.​1574-6941.​2011.​01123.​x PubMed CrossRef
    Soares CL, Duran N (2001) Biodegradation of chlorolignin and lignin-like compounds contained in E1-pulp bleaching effluent by fungal treatment. Appl Biochem Biotechnol 95:135–149. doi:10.​1385/​ABAB:​95:​2:​135 PubMed CrossRef
    Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, New YorkCrossRef
    Tavares APM, Coelho MAZ, Coutinho JAP, Xavier A (2005) Laccase improvement in submerged cultivation: induced production and kinetic modelling. J Chem Technol Biotechnol 80:669–676. doi:10.​1002/​jctb.​1246 CrossRef
    Upadhyay RC, Hofrichter M (1993) Effect of phenol on the mycelial growth and fructification in some of basidiomycetous fungi. J Basic Microbiol 33:343–347. doi:10.​1002/​jobm.​3620330512 PubMed CrossRef
    Valaskova V, de Boer W, Klein Gunnewiek PJA, Pospisek M, Baldrian P (2009) Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J 3:1218–1221. doi:10.​1038/​ismej.​2009.​64 PubMed CrossRef
    van der Wal A, Ottosson E, de Boer W (2015) Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology 96:124–133. doi:10.​1890/​14-0242.​1 PubMed CrossRef
    Větrovský T, Voříšková J, Šnajdr J, Gabriel J, Baldrian P (2010) Ecology of coarse wood decomposition by the saprotrophic fungus Fomes fomentarius. Biodegradation 22:709–718. doi:10.​1007/​s10532-010-9390-8 PubMed CrossRef
    Weedon JT, Cornwell WK, Cornelissen JH, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: A role for trait variation among tree species? Ecol Lett 12:45–56PubMed CrossRef
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl 18:315–322
  • 作者单位:Tobias Arnstadt (1)
    Björn Hoppe (2) (3)
    Tiemo Kahl (3)
    Harald Kellner (1)
    Dirk Krüger (2)
    Claus Bässler (4)
    Jürgen Bauhus (3)
    Martin Hofrichter (1)

    1. Department of Bio- and Environmental Sciences, International Institute Zittau, Technische Universität Dresden, Zittau, Germany
    2. Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Halle (Saale), Germany
    3. Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
    4. Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany
  • 刊物主题:Forestry; Plant Sciences; Plant Ecology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1612-4677
文摘
Lignin and its degradation, particularly in forest ecosystems, play a major role in the global carbon cycle. Filamentous fungi equipped with extracellular oxidoreductases (oxidative enzymes), i.e., laccase, manganese-dependent peroxidases and several other peroxidases, are the key players in the bioconversion of lignin. In particular, for coarse woody debris (CWD), this process is poorly understood and the activities of laccase and peroxidases have never been studied on a large field scale. We investigated the activities of these enzymes in 701 samples of Fagus sylvatica, Picea abies and Pinus sylvestris CWD across three regions in Germany and analyzed their dependence on pH, water content, wood density, total lignin, organic extractives, metals, water-soluble lignin fragments and fungal species richness. Respective enzyme activities were present in 79 % of all samples, and the activities were highly variable and more frequent in F. sylvatica than in coniferous wood. Logistic regressions and correlations between enzyme activities and the variables revealed that the fungal community structure and the amount of water-soluble lignin fragments are most important determinants, and that the prevalent acidic pH in CWD is suitable to facilitate laccase and manganese peroxidase activities. Concentrations of metals (manganese, copper, iron) were sufficient to ensure synthesis and functioning of relevant enzymes. Based on this large field study, we conclude that laccase and peroxidases in CWD are highly relevant for lignin degradation, but the variable pattern of their secretion is the result of a complex array of wood parameters and the fungal community structure, which could only partly be resolved. Keywords Laccase Manganese peroxidase General peroxidase Dead wood Lignin Wood rot

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700