Graphs attached to simple Frobenius-Perron dimensions of an integral fusion category
详细信息    查看全文
  • 作者:Sonia Natale ; Edwin Pacheco Rodríguez
  • 关键词:Fusion category ; Frobenius ; Perron dimension ; Frobenius ; Perron graph ; Equivariantization ; Braided fusion category ; Modular category ; Solvability
  • 刊名:Monatshefte f¨¹r Mathematik
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:179
  • 期:4
  • 页码:615-649
  • 全文大小:670 KB
  • 参考文献:1.Alfandary, G.: On graphs related to conjugacy classes of groups. Isr. J. Math. 86, 211–220 (1994)MathSciNet CrossRef MATH
    2.Bakalov, B., Kirillov, A. Jr.: Lectures on Tensor Categories and Modular Functors. University Lecture Series, vol. 21. American Mathematical Society, Providence, RI (2001)
    3.Bertram, E., Herzog, M., Mann, A.: On a graph related to conjugacy classes of groups. Bull. Lond. Math. Soc. 22, 569–575 (1990)MathSciNet CrossRef MATH
    4.Brown, K.: Cohomology of Groups. Graduate Texts in Mathematics, vol. 87. Springer, New York (1982)
    5.Bruguières, A.: Catégories prémodulaires, modularisations et invariants des variétés de dimension 3. Math. Ann. 316, 215–236 (2000)MathSciNet CrossRef MATH
    6.Bruguières, A., Burciu, S.: On normal tensor functors and coset decompositions for fusion categories, preprint arXiv:​1210.​3922 (2013)
    7.Bruguières, A., Natale, S.: Exact sequences of tensor categories. Int. Math. Res. Not. 2011, 5644–5705 (2011)MathSciNet MATH
    8.Burciu, S., Natale, S.: Fusion rules of equivariantizations of fusion categories. J. Math. Phys. 54, 013511 (2013)MathSciNet CrossRef MATH
    9.Bruillard, P., Galindo, C., Hong, S.-M., Kashina, Y., Naidu, D., Natale, S., Plavnik, J., Rowell, E.: Classification of integral modular categories of Frobenius-Perron dimension \(pq^4\) and \(p^2q^2\) . Can. Math. Bull. 57, 721–734 (2014)MathSciNet CrossRef MATH
    10.Camina, A.R., Camina, R.D.: The influence of conjugacy class sizes on the structure of finite groups: a survey. Asian Eur. J. Math. 4, 559–588 (2011)MathSciNet CrossRef MATH
    11.Casolo, C., Dolfi, S.: The diameter of a conjugacy class graph of finite groups. Bull. Lond. Math. Soc. 28, 141–148 (1996)MathSciNet CrossRef MATH
    12.Davydov, A., Mueger, M., Nikshych, D., Ostrik, V.: The Witt group of non-degenerate braided fusion categories. J. Reine Angew. Math. 677, 135–177 (2013)MathSciNet MATH
    13.Deligne, P.: Catégories tensorielles. Mosc. Math. J. 2, 227–248 (2002)MathSciNet MATH
    14.Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi-Quantum Groups Related to Orbifold Models. In: Proceedings of the International Colloquium on Modern Quantum Field Theory, Tata Institute of Fundamental Research, pp. 375–383 (1990)
    15.Dong, J., Natale, S., Vendramin, L.: Frobenius property for fusion categories of small integral dimension. J. Algebra Appl. 14, 1550011 (2015)MathSciNet CrossRef MATH
    16.Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: Group-theoretical properties of nilpotent modular categories, preprint arXiv:​0704.​0195 (2007)
    17.Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories I. Sel. Math. New Ser. 16, 1–119 (2010)MathSciNet CrossRef MATH
    18.Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math 162, 581–642 (2005)MathSciNet CrossRef MATH
    19.Etingof, P., Nikshych, D., Ostrik, V.: Weakly group-theoretical and solvable fusion categories. Adv. Math 226, 176–205 (2011)MathSciNet CrossRef MATH
    20.Gelaki, S., Naidu, D., Nikshych, D.: Centers of graded fusion categories. Algebra Number Theory 3, 959–990 (2009)MathSciNet CrossRef MATH
    21.Gelaki, S., Nikshych, D.: Nilpotent fusion categories. Adv. Math. 217, 1053–1071 (2008)MathSciNet CrossRef MATH
    22.Isaacs, M.: Character theory of finite groups. Academic Press, New York (1976)MATH
    23.Isaacs, M.: Coprime group actions fixing all nonlinear irreducible characters. Can. J. Math. 41, 68–82 (1989)MathSciNet CrossRef MATH
    24.Isaacs, M., Praeger, C.: Permutation group subdegrees and the common divisor graph. J. Algebra 159, 158–175 (1993)MathSciNet CrossRef MATH
    25.Ito, N.: On the degrees of irreducible representations of a finite group. Nagoya Math. J. 3, 5–6 (1951)MathSciNet MATH
    26.Kazarin, L.: On groups with isolated conjugacy classes, Sov. Math. 25, 43–49 (1981) (translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1981, (230) 40–45 (1981))
    27.Lewis, M.: An overview of graphs associated with character degrees and conjugacy class sizes in finite groups. Rocky Mt. J. Math. 38, 175–211 (2008)MathSciNet CrossRef MATH
    28.Manz, O.: Degree Problems II: \(\pi \) -separable character degrees. Commun. Algebra 13, 2421–2431 (1985)MathSciNet CrossRef MATH
    29.Manz, O., Staszewski, R., Willems, W.: The number of components of a graph related to character degrees. Proc. Am. Math. Soc. 103, 31–37 (1988)MathSciNet CrossRef MATH
    30.Manz, O., Willems, W., Wolf, T.: The diameter of the character degree graph. J. Reine Angew. Math. 402, 181–198 (1989)MathSciNet MATH
    31.Manz, O., Wolf, T.: Representations of solvable groups. London Mathematics Society Lecture Notes Series 185. Cambridge University Press, Cambridge (1993)CrossRef MATH
    32.Mason, G., Ng, S.: Group cohomology and gauge equivalence of some twisted quantum doubles. Trans. Am. Math. Soc 353, 3465–3509 (2001)MathSciNet CrossRef MATH
    33.Michler, G.: A finite simple group of Lie type has \(p\) -blocks with different defects, \(p \ne 2\) . J. Algebra 104, 220–230 (1986)MathSciNet CrossRef MATH
    34.Müger, M.: Galois theory for braided tensor categories and the modular closure. Adv. Math. 150, 151–201 (2000)MathSciNet CrossRef MATH
    35.Müger, M.: Galois extensions of braided tensor categories and braided crossed \(G\) -categories. J. Algebra 277, 256–281 (2004)MathSciNet CrossRef MATH
    36.Naidu, D., Nikshych, D., Witherspoon, S.: Fusion subcategories of representation categories of twisted quantum doubles of finite groups. Int. Math. Res. Not. 22, 4183–4219 (2009)MathSciNet MATH
    37.Naidu, D., Rowell, E.: A finiteness property for braided fusion categories. Algebr. Represent. Theory 14, 837–855 (2011)MathSciNet CrossRef MATH
    38.Natale, S.: Hopf algebra extensions of group algebras and Tambara-Yamagami categories. Algebr. Represent. Theory 13, 673–691 (2010)MathSciNet CrossRef MATH
    39.Natale, S.: On weakly group-theoretical non-degenerate braided fusion categories. J. Noncommut. Geom. Preprint arXiv:​1301.​6078 (to appear)
    40.Natale, S.: Faithful simple objects, orders and gradings of fusion categories. Algebr. Geom. Topol. 13, 1489–1511 (2013)MathSciNet CrossRef MATH
    41.Tambara, D.: Invariants and semi-direct products for finite group actions on tensor categories. J. Math. Soc. Jpn. 53, 429–456 (2001)MathSciNet CrossRef MATH
    42.Turaev, V.: Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Math. 18, Berlin (1994)
    43.Turaev, V.: Homotopy quantum field theory, EMS Tracts in Mathematics 10. European Mathematical Society, Zurich (2010)CrossRef
    44.Turaev, V.: Crossed group-categories. Arab. J. Sci. Eng. 33, 484–503 (2008)MathSciNet MATH
    45.Willems, W.: Blocks of defect zero and degree problems, Proc. Sympos. Pure Math. vol. 47 (I), pp. 481–484. American Mathematics Society Providence, RI (1987)
    46.Yuster, T.: Orbit sizes under automorphism actions in finite groups. J. Algebra 82, 342–352 (1983)MathSciNet CrossRef MATH
  • 作者单位:Sonia Natale (1)
    Edwin Pacheco Rodríguez (1)

    1. Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, CIEM-CONICET, Ciudad Universitaria, 5000, Córdoba, Argentina
  • 刊物主题:Mathematics, general;
  • 出版者:Springer Vienna
  • ISSN:1436-5081
文摘
Let \({\mathcal C}\) be an integral fusion category. We study some graphs, called the prime graph and the common divisor graph, related to the Frobenius-Perron dimensions of simple objects in the category \({\mathcal C}\), that extend the corresponding graphs associated to the irreducible character degrees and the conjugacy class sizes of a finite group. We describe these graphs in several cases, among others, when \({\mathcal C}\) is an equivariantization under the action of a finite group, a \(2\)-step nilpotent fusion category, and the representation category of a twisted quantum double. We prove generalizations of known results on the number of connected components of the corresponding graphs for finite groups in the context of braided fusion categories. In particular, we show that if \({\mathcal C}\) is any integral non-degenerate braided fusion category, then the prime graph of \({\mathcal C}\) has at most \(3\) connected components, and it has at most \(2\) connected components if \({\mathcal C}\) is in addition solvable. As an application we prove a classification result for weakly integral braided fusion categories all of whose simple objects have prime power Frobenius-Perron dimension.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700