Topographical distance matrices for porous arrays
详细信息    查看全文
文摘
The topographical Wiener index is calculated for two-dimensional graphs describing porous arrays, including bee honeycomb. For tiling in the plane, we model hexagonal, triangular, and square arrays and compare with topological formulas for the Wiener index derived from the distance matrix. The normalized Wiener indices of C4, T13, and O(4), for hexagonal, triangular, and square arrays are 0.993, 0.995, and 0.985, respectively, indicating that the arrays have smaller bond lengths near the center of the array, since these contribute more to the Wiener index. The normalized Perron root (the first eigenvalue, λ 1), calculated from distance/distance matrices describes an order parameter, f = l1/n{\phi=\lambda_1/n} , where f = 1{\phi= 1} for a linear graph and n is the order of the matrix. This parameter correlates with the convexity of the tessellations. The distributions of the normalized distances for nearest neighbor coordinates are determined from the porous arrays. The distributions range from normal to skewed to multimodal depending on the array. These results introduce some new calculations for 2D graphs of porous arrays.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700