Visualizing Geospatial Distribution of Pesticide Residue Pollution Using Cartogram and Heat Map
详细信息    查看全文
  • 关键词:Geospatial visualization ; Cartogram ; Heat map ; Inverse distance weighted interpolation ; Multiple ; linear regression ; Pesticide residue pollution
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:10092
  • 期:1
  • 页码:231-244
  • 参考文献:1.Ward, M., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications. A K Peters/CRC Press, Boca Raton (2010)MATH
    2.Verbeek, K., Buchin, K., Speckmann, B.: Flow map layout via spiral trees. IEEE Trans. Vis. Comput. Graph. 17(12), 2536–2544 (2011)CrossRef
    3.Cromley, R.G., Zhang, S., Vorotyntseva, N.: A concentration-based approach to data classification for choropleth mapping. Int. J. Geogr. Inf. Sci. 29(10), 1845–1863 (2015)CrossRef
    4.Gao, P., Zhao, L., Xie, M., Tian, K.: Cartogram: a review and prospective. Geoma. Spati. Info. Tech. 38(6), 220–215 (2015)
    5.Chen, Y., Lin, X., Zhao, Y., Sun, Y., Zhang, X.: SunMap: an associated hierarchical data visualization method based on heatmap and sunburst. J. Comput. Aided Des. Comput. Graph. 28(7), 1075–1083 (2016)
    6.Chen, W., Shen, Z., Tao, Y.: Data visualization. Publishing House of Electronics Industry, Beijing (2013)
    7.Wang, F., Chen, W., Tao, Y., et al.: A search system for social media based on visual interface. Comput Aided Des. Comput. Graph. 27(3), 460–468 (2015)
    8.Cruz, P., Cruz, A., Machado, P.: Contiguous animated edge-based cartograms for traffic visualization. IEEE Comput. Graph. Appl. 35(5), 76–83 (2015)CrossRef
    9.Dorling, D., Barford, A., Newman, M.: Worldmapper: the world as you’ve never seen it before. IEEE Trans. Vis. Comput. Graph. 12(5), 757–764 (2006)CrossRef
    10.Inoue, R., Shimizu, E.: A new algorithm for continuous area cartogram construction with triangulation of regions and restriction on bearing changes of edges. The Am. Cartographer 33(2), 115–125 (2006)CrossRef
    11.Keim, D.A., Panse, C., North, S.C.: Medial-axis-based cartograms. IEEE Comput. Graph. Appl. 25(3), 60–68 (2005)CrossRef
    12.Tobler, W.R.: Choropleth maps without class intervals? Geogr. Anal. 5(3), 262–265 (1973)CrossRef
    13.Dougenik, J.A., Chrisman, N.R., Niemeyer, D.R.: An algorithm to construct continuous area cartograms*. Prof. Geogr. 37(1), 75–81 (1985)CrossRef
    14.Gastner, M.T., Newman, M.E.J.: Diffusion-based method for producing density equalizing maps. Proc. Natl. Acad. Sci. U.S.A. 101(20), 7499–7504 (2004)MathSciNet CrossRef MATH
    15.Henriques, R., Bacao, F., Lobo, V.: Carto-SOM: cartogram creation using self-organizing maps. Int. J. Geogr. Inf. Sci. 23(4), 483–511 (2009)CrossRef
    16.Florisson, S., Van Kreveld, M., Speckmann, B.: Rectangular cartograms: construction & animation. In: ACM Symposium on Computational Geometry, Pisa, Italy, June, pp. 372–373. OAI (2005)
    17.De Berg, M., Mumford, E., Speckmann, B.: Optimal BSPs and rectilinear cartograms. Int. J. Comput. Geom. Appl. 20(2), 203–222 (2010)MathSciNet CrossRef MATH
    18.Alam, M.J., Kobourov, S.G., Veeramoni, S.: Quantitative measures for cartogram generation techniques. Comput. Graph. Forum 34(3), 351–360 (2015)CrossRef
    19.Kamper, J.H., Kobourov, S.G., Nollenburg, M.: Circular-arc cartograms. In: 2013 IEEE Pacific Visualization Symposium (PacificVis), pp. 1–8 (2013)
    20.Cho, I., Dou, W., Wang, D.X., et al.: VAiRoma: a visual analytics system for making sense of places, times, and events in roman history. IEEE Trans. Visual Comput. Graph. 22(1), 210–219 (2016)CrossRef
    21.Muelder, C., Zhu, B., Chen, W., et al.: Visual analysis of cloud computing performance using behavioral lines. IEEE Trans. Vis. Comput. Graph. 22(6), 1694–1704 (2016)CrossRef
    22.Wang, H., Wei, Y., Huang, L.: Incremental algorithm of multiple linear regression model. J. Beijing Univ. Aeronaut. Astronaut. 40(11), 1487–1491 (2014)
    23.Hao, J., Suying, G.: Selection of best multiple linear regression model. J. Hebei Univ. Technol. 31(5), 10–14 (2002)
    24.Setianto, A., Triandini, T.: Comparison of kriging and inverse distance(IDW) interpolation methods in lineament extraction and analysis. J. Appl. Geol. 5(1), 21–29 (2013)
    25.Liu, G., Wang, Y., Wang, Y.: Impact of inverse distance weighted interpolation factors on interpolation error. China Sciencepaper 05(11), 879–884 (2010)
    26.Zhang, X., Pan, Y.: Vectorization Technique for GIS Grid Data Based on “Grid Technique”. J. Comput. Aided Des. Comput. Graph. 13(10), 895–900 (2001)
  • 作者单位:Yi Chen (17)
    Yunfang Zhao (17)
    Xingru Chen (17)
    Xun Zhang (17)

    17. Beijing Key Laboratory of Big Data Technology for Food Safety, School of Computer and Information Engineering, Beijing Technology and Business University, Beijing, 100048, China
  • 丛书名:Transactions on Edutainment XIII
  • ISBN:978-3-662-54395-5
  • 卷排序:10092
文摘
Pesticide Residue is one of main sources resulted in food safety problems. It is necessary to analyze the distribution pattern of pesticide residue in order to supervision and management the overuse of pesticide. Thematic map is an effective approach for visualizing data combined with a specific geographic area. The most popular of the thematic maps are Choropleth, in which the values of the attribute are encoded as points or colored regions on the map. However, when the density of attribute-points on an area is different with that region’s area, the data overlap will be produced. In this paper, we present a method for visualizing multidimensional data based on Cartogram. With this method, we first create Cartogram and Choropleth for presenting the geospatial distribution of data at the same time in order to avoid data overlapping, in which the Cartogram is generated by using diffusion algorithm; Second, we create thematic geographic heat map for presenting the pesticide residue pollution index by means of Inverse Distance Weighted interpolation to reckon missing data, in which the pesticide residue pollution index is calculated by using multiple linear regression algorithm; Thirdly, a multi-view spatial-temporal data visualization system, which combines maps, time axis, bar chart, bubble chart, pie chart etc. is presented to help user analyzing the data. A variety of interactive means such as region selection, data filtering, time cursor dragging, are also introduced to the system. The system uses two different ways to combine spatial with time. The results of user evaluation demonstrated that our method and system can effectively help user to analyze geospatial distribution of pesticide residue pollution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700