用户名: 密码: 验证码:
Changing agricultural practices: potential consequences to aquatic organisms
详细信息    查看全文
  • 作者:Peter J. Lasier ; Matthew L. Urich…
  • 关键词:Glyphosate ; Steroid hormones ; Nutrient enrichment ; Surface waters ; Sediments
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:188
  • 期:12
  • 全文大小:2,288 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
  • 卷排序:188
文摘
Agricultural practices pose threats to biotic diversity in freshwater systems with increasing use of glyphosate-based herbicides for weed control and animal waste for soil amendment becoming common in many regions. Over the past two decades, these particular agricultural trends have corresponded with marked declines in populations of fish and mussel species in the Upper Conasauga River watershed in Georgia/Tennessee, USA. To investigate the potential role of agriculture in the population declines, surface waters and sediments throughout the basin were tested for toxicity and analyzed for glyphosate, metals, nutrients, and steroid hormones. Assessments of chronic toxicity with Ceriodaphnia dubia and Hyalella azteca indicated that few water or sediment samples were harmful and metal concentrations were generally below impairment levels. Glyphosate was not observed in surface waters, although its primary degradation product, aminomethyl phosphonic acid (AMPA), was detected in 77% of the samples (mean = 509 μg/L, n = 99) and one or both compounds were measured in most sediment samples. Waterborne AMPA concentrations supported an inference that surfactants associated with glyphosate may be present at levels sufficient to affect early life stages of mussels. Nutrient enrichment of surface waters was widespread with nitrate (mean = 0.7 mg NO3-N/L, n = 179) and phosphorus (mean = 275 μg/L, n = 179) exceeding levels associated with eutrophication. Hormone concentrations in sediments were often above those shown to cause endocrine disruption in fish and appear to reflect the widespread application of poultry litter and manure. Observed species declines may be at least partially due to hormones, although excess nutrients and herbicide surfactants may also be implicated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700