Geochemistry, petrogenesis and age of metamorphic rocks of the Angara complex at the junction of South and North Yenisei Ridge
详细信息    查看全文
  • 作者:I. I. Likhanov ; V. V. Reverdatto
  • 关键词:geochemistry ; protoliths ; metamorphism ; Th–U–Pb dating of monazite ; 40Ar–39Ar geochronology ; Grenville and Valhalla events ; Yenisei Ridge ; Siberian craton
  • 刊名:Geochemistry International
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:54
  • 期:2
  • 页码:127-148
  • 全文大小:1,648 KB
  • 参考文献:J. J. Ague, “Evidence for major mass transfer and volume strain during regional metamorphism of pelites,” Geology 19, 855–858 (1991).CrossRef
    J. L. Anderson and D. R. Smith, “The effects of temperature and fO2 on the Al-in-hornblende barometer,” Am. Mineral. 80, 549–559 (1995).CrossRef
    Yu. A. Balashov, Geochemistry of Rare-Earth Elements (Nedra, Moscow, 1976) [in Russian].
    S. Bhadra and A. Bhattacharya, “The barometer tremolite + tschermakite + 2 albite = 2 pargasite + 8 quartz: constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages,” Am. Mineral. 92, 491–502 (2007).CrossRef
    J. D. Blundy and T. J. B. Holland, “Calcic amphibole equilibria and new amphibole-plagioclase geothermometer,” Contrib. Mineral. Petrol. 104, 208–224 (1990).CrossRef
    S. V. Bogdanova, B. Bingen, R. Gorbatschev, T. N. Kheraskova, V. I. Kozlov, V. N. Puchkov, and Yu. A. Volozh, “The East European Craton (Baltica) before and during the assembly of Rodinia,” Precambrian Research 160, 23–45 (2008).CrossRef
    S. V. Bogdanova, S. A. Pisarevsky, and Z. X. Li. “Assembly and breakup of Rodinia (Some results of IGCP Project 440),” Stratigr. Geol. Correl. 17 (3), 259–274 (2009).CrossRef
    W. V. Boynton, “Cosmochemistry of the rare earth elements: meteorite studies,” in Rare earth element geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63–114.CrossRef
    P. A. Cawood, R. Strachan, K. Cutts, P. D. Kinny, M. Hand, and S. Pisarevsky, “Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic,” Geology 38 (2), 99–102 (2010).CrossRef
    A. I. Chernykh, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (OIGGM SO RAN, Novosibirsk, 2000) (in Russian).
    K. Condie, “High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?” Lithos 79, 491–504 (2005).CrossRef
    M. Corsini, V. Bosse, G. Feraud, F. Demoux, and G. Crevola, “Exhumation processes during post-collisional stage in the Variscan belt revealed by detailed 40Ar/39Ar study (Tanneron Massif, SE France),” Int. J. Earth Sci. 99, 327–341 (2010).CrossRef
    R. Cox, D. R. Lowe, and R. L. Cullers, “The influence of sediment recycling and basement composition on evolution of mudrock chemistry in southwesterm United States,” Geochim. Cosmochim. Acta 59, 2919–2940 (1995).CrossRef
    I. W. D. Dalziel, “Neoproterozoic–Paleozoic geography and tectonics: review, hypothesis and environmental speculation,” Geol. Soci. Amer. Bull. 109, 16–42 (1997).CrossRef
    I. W. D. Dalziel, S. Mosher, and L. M. Gahagan, “Laurentia–Kalahari collision and the assembly of Rodinia,” J. Geol. 108, 499–513 (2000).CrossRef
    A. Didenko and V. Yu. Vodovozov, “The apparent polar wander path of the Siberian craton in the Paleoproterozoic,” in Rodinia 2013: Supercontinental Cycles and Geodynamics Symposium, Ed. by R. Veselovskiy and N. Lubnina (PERO Press, Moscow, 2013), pp. 20.
    G. N. Eby, “Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications,” Geology 20, 641–644 (1992).CrossRef
    A. S. Egorov, Deep Structure and Geodynamics of the North Eurasia Lithosphere: Results of Geological-Geophysical Modeling along (Geotransects of Russia) (VSEGEI, St. Petersburg, 2004) [in Russian].
    R. E. Ernst, M. T. D. Wingate, K. L. Buchan, and Z. H. Li, “Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents,” Precambrian Res. 160, 159–178 (2008).CrossRef
    D. A. D. Evans and R. N. Mitchell, “Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna,” Geology 39 (5), 443–446 (2011).CrossRef
    C. M. Fedo, H. W. Nesbitt, and G. M. Young, “Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosoils, with implications for paleoweathering conditions and provenance,” Geology 23, 921–924 (1995).CrossRef
    J. M. Ferry and F. S. Spear, “Experimental calibration of the partitioning of Fe and Mg between biotite and garnet,” Contrib. Mineral.Petrol. 66, 113–117 (1978).CrossRef
    J. G. Fitton, A. D. Saunders, M. J. Norry, B. S. Hardarson, and R. N. Taylor, “Thermal and chemical structure of the Iceland plume,” Earth Planet. Sci. Lett. 153, 197–208 (1997).CrossRef
    E. D. Ghent and M. Z. Stout, “Geobarometry and geothermometry of plagioclase–biotite–garnet–muscovite assemblages,” Contrib. Mineral. Petrol. 76, 92–97 (1981).CrossRef
    J. M. Hammarstrom and E.-A. Zen, “Aluminum in hornblende: an empirical igneous geobarometers,” Am. Mineral. 71, 1297–1313 (1986).
    L. Harnois, “The CIW index: a new chemical index of weathering,” Sediment. Geol. 55, 319–322 (1988).CrossRef
    K. V. Hodges, “Geochronology and thermochronology in orogenic system,” in Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier, Oxford, 2004), pp. 263–292.
    M. J. Holdaway “Application of new experimental and garnet Margules data to the garnet-biotite geothermometer,” Am. Mineral. 85, 881–892 (2000).CrossRef
    L. S. Hollister, G. C. Grissom, E. K. Peters, H. H. Stowell, and V. B. Sisson, “Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons,” Am. Mineral. 72, 231–239 (1987).
    P. R. Hooper, “The Columbia river basalts,” Science 215, 1463–1468 (1982).CrossRef
    G. Hoschek, “The stability of staurolite and chloritoid and their significance in metamorphism of pelitic rocks,” Contrib. Mineral. Petrol. 22, 208–232 (1969).CrossRef
    T. N. Kheraskova, S. A. Kaplan, and V. I. Galuev, “Structure of the Siberian Platform and its western margin in the Riphean–Early Paleozoic,” Geotectonics 43(2), 115–132 (2009).CrossRef
    V. V. Khiller, S. L. Votyakov, and Yu. V. Erokhin, “X-Ray spectral microprobe analysis of the U–Th-bearing minerals geochronometers (methodical recommendations),” Vestn. Ural’sk. Odt. Ross. Mineral. O-va 8, 115–130 (2011).
    M. J. Kohn and F. S. Spear, “Error propagation for barometers,” Am.Mineral. 76, 138–147 (1991).
    P. S. Kozlov, I. I. Likhanov, V. V. Reverdatto, and S. V. Zinoviev, “Tectonometamorphic eolution of the Garevka polymetamorphic complex (Yenisei Ridge),” Russ. Geol. Geophys. 53 (11), 1133–1149 (2012).CrossRef
    P. S. Kozlov, I. I. Likhanov, S. V. Zinoviev, and V. V. Hiller, “Angara metamorphic complex, Yenisei Ridge: geology, PT conditions, and metamorphic age,” Litosfera 14 (6), 141–149 (2014).
    I. I. Likhanov, “Chloritoid, staurolite, and gedrite of aluminous hornfelses of the Karatash Massif (eastern slope of the Kuznetsk Alatau),” Zap. Vsesoyuz. Mineral O-va 116 (4), 466–475 (1987).
    I. I. Likhanov, “Chemical evolution of metapelite minerals during low-temperature contact metamorphism: evidence from the Karatash Massif in Kuznetsk Alatau,” Vsesoyuz. Mineral O-va 117(2), 153–162(1988).
    I. I. Likhanov, “Chloritoid, staurolite and gedrite of the high-alumina hornfelses of the Karatash pluton,” Int. Geol. Rev. 30 (8), 868–877 (1988a).CrossRef
    I. I. Likhanov, “Evolution of chemical composition of metapelite minerals during low-temperature contact metamorphism at the Karatash pluton,” Int. Geol. Rev. 30 (8), 878–887 (1988b).CrossRef
    I. I. Likhanov, “Mineral reactions in high-alumina ferriferous metapelitic hornfelses: the problem of stability of rare parageneses of contact metamorphism,” Geologiya i Geofizika 44 (4), 305–316 (2003).
    I. I. Likhanov and V. V. Reverdatto, “Provenance of Precambrian Fe- and Al-rich metapelites in the Yenisey Ridge and Kuznetsk Alatau, Siberia: geochemical signatures,” Acta Geol. Sinica–English Edition 81 (3), 409–423 (2007).CrossRef
    I. I. Likhanov and V. V. Reverdatto, “Precambrian Fe- and Al-rich pelites from the Yenisey Ridge, Siberia: geochemical signatures for protolith origin and evolution during metamorphism,” Int. Geol. Rev. 50 (7), 597–623 (2008).CrossRef
    I. I. Likhanov and V. V. Reverdatto, “Precambrian kyanite–sillimanite metamorphism in overthrust terranes of the Yenisey Ridge, Siberia,” Geochim. Cosmochim. Acta 73 (13S), A763 (2009).
    I. I. Likhanov and V. V. Reverdatto, Neoproterozoic collisional metamorphism in overthrust terranes of the Trans-Angarian Yenisey Ridge, Siberia, Int. Geol. Rev. 53(7), 802–845 (2011a).CrossRef
    I. I. Likhanov and V. V. Reverdatto, “Precambrian P–T–t history of the Yenisey Ridge as a consequence of contrasting tectonic settings in the western margin of the Siberian craton,” Mineral. Mag. 75 (3), 1327 (2011b).
    Likhanov, I. I. and Reverdatto, V. V. “Lower Proterozoic metapelites in the Northern Yenisei Range: nature and age of the protolith and the behavior of material during collisional metamorphism,” Geochem. Int. 49 (3), 224–252 (2011).CrossRef
    I. I. Likhanov and V. V. Reverdatto, “Compositional zoning of polyphase garnet in pelites as a consequence of three metamorphic events in Precambrian P–T–t history of the Yenisey Ridge, Siberia,” Mineral. Mag. 77 (5), 1609 (2013).
    Likhanov, I. I. and Reverdatto, V. V. “Geochemistry, age, and petrogenesis of rocks from the Garevka metamorphic complex, Yenisey Ridge,” Geochem. Int. 52 (1), 1–21 (2014a).CrossRef
    Likhanov, I. I. and Reverdatto, V. V. “P–T–t constraints on the metamorphic evolution of the Transangarian Yenisei Ridge: geodynamic and petrological implications,” Russ. Geol. Geophys. 55 (3), 299–322 (2014c).CrossRef
    Likhanov, I. I. and Reverdatto, V. V. “Zoning of garnets as an indicator of metamorphic evolution in metapelites of the Yenisei Ridge,” Dokl. Earth Sci. 458 (1), 1099–1103 (2014b).CrossRef
    I. I. Likhanov and V. V. Reverdatto, “The oldest metabasites of the north Yenisei Ridge,” Dokl. Earth Sci. 460 (2), 113–117 (2015a).CrossRef
    I. I. Likhanov and V. V. Reverdatto, “Evidence of Middle Neoproterozoic extensional tectonic settings along the western margin of the Siberian Craton: implications for the breakup of Rodinia,” Geochem Int. 53 (7), 671–679 (2015b).CrossRef
    I. I. Likhanov V. V. Reverdatto, and I. Memmi, “Shortrange mobilization of elements in the biotite zone of contact aureole of the Kharlovo gabbro massif (Russia),” Eur. J. Mineral. 6 (1), 133–144 (1994).CrossRef
    I. I. Likhanov, V. V. Reverdatto, V. S. Sheplev, A. E. Verschinin, and P. S. Kozlov, “Contact metamorphism of Fe- and Al-rich graphitic metapelites in the Transangarian region of the Yenisey Ridge, eastern Siberia, Russia,” Lithos 58, 55–80 (2001).CrossRef
    I. I. Likhanov, O. P. Polyansky, V. V. Reverdatto, and I. Memmi, “Evidence from Fe- and Al-rich metapelites for thrust loading in the Transangarian Region of the Yenisey Ridge, eastern Siberia,” J. Metamorph. Geol. 22 (8), 743–762 (2004).CrossRef
    I. I. Likhanov, P. S. Kozlov, N. V. Popov, V. V. Reverdatto, and A. E. Vershinin, “Collisional metamorphism as a result of thrusting in the Transangara Region of the Yenisei Ridge,” Dokl. Earth Sci. 411 (2), 1313–1317 (2006a).CrossRef
    I. I. Likhanov, V. V. Reverdatto, and A. E. Vershinin, “Geochemical evidence for protolith originof Fe- and Al-rich metapelites from the Kuznetsk Alatau and Yenisei Ridge,” Russ. Geol. Geophys. 47 (1), 120–133 (2006b).
    I. I. Likhanov, P. S. Kozlov, O. P. Polyansky, N. V. Popov, V. V. Reverdatto, A. V. Travin, and A. E. Vershinin, “Neoproterozoic age of collisional metamorphism in the Transangara Region of the Yenisei Ridge (based on 40Ar/39Ar data),” Dokl. Earth Sci. 413 (2), 234–237 (2007).CrossRef
    I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and N. V. Popov, “Collision metamorphism of Precambrian complexes in the Transangarian Yenisei Range,” Petrology 16 (2), 136–160 (2008a).CrossRef
    I. I. Likhanov, V. V. Reverdatto, and A. E. Vershinin, “Fe- and Al-rich metapelites of the Teiskaya Group, Yenisei Range: geochemistry, protoliths, and the behavior of their material during metamorphism,” Geochem. Int. 46 (1), 17–36 (2008b).CrossRef
    I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and N. V. Popov, “Kyanite—sillimanite metamorphism of the Precambrian complexes, Transangarian region of the Yenisei Ridge,” Russ. Geol. Geophys. 50 (12), 1034–1051 (2009).CrossRef
    I. I. Likhanov, V. V. Reverdatto, and A. V. Travin, “Exhumation rate of rocks from Neoproterozoic collisional metamorphic complexes of the Yenisei Ridge,” Dokl. Earth Sci. 435 (3), 1518–1523 (2010).CrossRef
    I. I. Likhanov, V. V. Reverdatto, and P. S. Kozlov, “Collision- related metamorphic complexes of the Yenisei Ridge: their evolution, ages, and exhumation rate,” Russ. Geol. Geophys. 52 (10), 1256–1269 (2011a).CrossRef
    I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and A. E. Vershinin, “The Teya polymetamorphic complex in the Transangarian Yenisei Ridge: an example of metamorphic superimposed zoning of low- and mediumpressure facies series,” Dokl. Earth Sci. 436 (2), 213–218 (2011b).CrossRef
    I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and S. V. Zinoviev, “New evidence for Grenville events on the western margin of the Siberian Craton: the example of the Garevka metamorphic complex in the Transangarian Yenisei Ridge,” Dokl. Earth Sci. 438 (4), 782–787 (2011c).CrossRef
    I. I. Likhanov, V. V. Reverdatto, and P. S. Kozlov, “U–Pb and 40Ar/39Ar evidence for Grenvillian activity in the Yenisey Ridge during formation of the Teya metamorphic complex,” Geochem. Int. 50(6), 551–557 (2012a).CrossRef
    I. I. Likhanov, V. V. Reverdatto, N. V. Popov, and P. S. Kozlov, “The first find of rapakivi granite in the Yenisei Ridge: age, pt conditions, and tectonic settings,” Dokl. Earth Sci. 443(2), 365–370(2012b).CrossRef
    I. I. Likhanov, N. V. Popov, and A. D. Nozhkin, “The oldest granitoids in the Transangarian part of the Yenisey Ridge: U–Pb and Sm–Nd data and geodynamic settings,” Geochem. Int. 50 (10), 869–877(2012c).CrossRef
    I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, V. V. Khiller, and V. P. Sukhorukov, “Three metamorphic events in the Precambrian P–T–t history of the Transangarian Yenisey Ridge recorded in garnet grains in metapelites”, Petrology 21 (6), 561–578 (2013).CrossRef
    I. I. Likhanov, V. V. Reverdatto, S. V. Zinoviev, and A. D. Nozhkin, “Age of blastomilonites of the Yenisei regional shear zone as evidence of the Vendian accretionary–collision events at the western margin of the Siberian Craton,” Dokl. Earth. Sci. 450 (1), 489–493 (2013a).CrossRef
    I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and S. V. Zinov’ev, “The Neoproterozoic Trans-Angara Dike Belt, Yenisei Range, as an indicator of extension and breakup of Rodinia,” Dokl. Earth. Sci. 450 (2), 613–617 (2013b).CrossRef
    I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and V. V. Khiller, “Neoproterozoic metamorphic evolution in the Transangarian Yenisei Ridge: evidence from monazite and xenotime geochronology,” Dokl. Earth. Sci. 450 (1), 556–561 (2013c).CrossRef
    I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and V. V. Khiller, “The first data on Mesoproterozoic tectonic events in the geological history of the south Yenisei Ridge,” Dokl. Earth. Sci. 453 (1), 1274–1277 (2013d).CrossRef
    I. I. Likhanov, A. D. Nozhkin, V. V. Reverdatto, and P. S. Kozlov, “Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian Craton,” Geotectonics 48 (5), 371–389 (2014a).CrossRef
    I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, V. V. Khiller, and A. D. Nozhkin, “Late Proterozoic A-type granites of the Chernorechenskii Massif in the Yenisei Ridge: new geochemical and geochronological data,” Dokl. Earth. Sci. 455 (1), 279–283 (2014b).CrossRef
    I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, V. V. Khiller, and V. P. Sukhorukov, “P–T–t constraints on polymetamorphic complexes of the Yenisey Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions,” J. Asian Earth Sci. 113 (1), 391–410 (2015).CrossRef
    I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, S. V. Zinoviev, and V. V. Khiller, “P-T-t reconstructions of South Yenisei Ridge metamorphic history (Siberian Craton): petrological consequences and application to the supercontinental cycles,” Russ. Geol. Geophys. 56 (6), 805–824 (2015a).CrossRef
    I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, S. V. Zinoviev, and V. V. Khiller, “Evidence for the Valhalla tectonic events at the western margin of the Siberian Craton,” Dokl. Earth Sci. 462(1), 458–462 (2015b).CrossRef
    M. T. McCulloch and J. A. Gamble, “Geochemical and geodynamial constrints on subduction zone magmatism,” EarthPlanet. Sci. Lett. 102, 358–374 (1991).CrossRef
    S. M. McLennan, “Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes,” in Geochemistry and Mineralogy of Rare Earth Elements, Ed. by B. R. Lipin and G. A. McKay (Mineralogical Society of America, Washington, 1989), pp. 169–200.
    M. A. Meschide, “A method of discriminating between different types of mid ocean rigde basalts and continental tholeites with Nb–Zr–Y diagram,” Chem.Geol. 56, 207–218(1986).CrossRef
    D. V. Metelkin, V. A. Vernikovsky, and A. Yu. Kazansky, “Neoproterozoic evolution of Rodinia: constraints from new paleomagnetic data on the western margin of the Siberian Craton,” Russ. Geol. Geophys. 48 (1), 32–45 (2007).CrossRef
    G. L. Mitrofanov, T. V. Mordovskaya, and F. V. Nikol’sky, “Structure of the crust stacking in certain marginal parts of the Siberian Platform,” in Tectonics of Platform Regions (Nauka, Novosibirsk, 1988), pp. 169–173 [in Russian].
    E. D. Mullen, “MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implication for petrogenesis,” Earth Planet. Sci. Lett. 62, 53–62 (1983).CrossRef
    R. W. Murray, M. R. Buchholtz ten Brink, and D. L. Jones, “Rare earth elements as indicator of different marine depositional environments in chert and shale,” Geology 18, 268–272 (1990).CrossRef
    R. D. Nance, J. B. Murphy, and M. Santosh “The supercontinental cycle: a retrospective essay,” Gondwana Res. 25, 4–29 (2014).CrossRef
    H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lulites,” Nature 299, 715–717 (1982).CrossRef
    A. D. Nozhkin, A. S. Borisenko, and P. A. Nevol’ko, “Stages of Late Proterozoic magmatism and periods of Au mineralization in the Yenisei Ridge,” Russ. Geol. Geophys. 52 (1), 124–143 (2011).CrossRef
    A. D. Nozhkin, O. M. Turkina, E. V. Bibikova, A. A. Terleev, and V. V. Khomentovsky, “Riphean granite-gneiss cupolas of the Yenisei Ridge: geological structure and U-Pb isotope age,” Geol. Geofiz. 40 (9), 881–891 (1999).
    A. D. Nozhkin, O. M. Turkina, Yu. K. Sovetov, and A. V. Travin, “The Vendian accretionary event in the southwestern margin of the Siberian Craton,” Dokl. Earth Sci. 415 (6), 869–873 (2007).CrossRef
    A. D. Nozhkin, I. I. Likhanov, V. V. Reverdatto, and P. S. Kozlov, “Grenville orogeny, Late Neoproterozoic rift-related and intraplate magmatism at the western margin of the Siberian craton as geological evidence for the assembly and breakup of Rodinia,” in Rodinia 2013: Supercontinental Cycles and Geodynamics Symposium, Ed. by R. Veselovskiy and N. Lubnina (PERO Press, Moscow, 2013), p. 55.
    A. D. Nozhkin, O. M. Turkina, N. V. Dmitrieva, and I. I. Likhanov, “Age and P–T Parameters of Metamorphism of Metaterrigenous–Carbonate Deposits of the Derba Block (East Sayan),” Dokl. Earth Sci. 461 (5), 390–393 (2015).CrossRef
    J. A. Pearce, “Sources and settings of granitic rocks,” Episodes 19 (4), 120–125 (1996).
    J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25, 956–983 (1984).CrossRef
    S. Pisarevsky, “Pre-Rodinian supercontinents: how “super” were they?” in Rodinia 2013: Supercontinental Cycles and Geodynamics Symposium, Ed. by R. Veselovskiy and N. Lubnina (PERO Press, Moscow, 2013), p. 58.
    N. V. Popov, I. I. Likhanov, and A. D. Nozhkin, “Mesoproterozoic granitoid magmatism in the Trans-Angara segment of the Yenisei Range: U–Pb evidence,” Dokl. Earth Sci. 431(4), 418–423 (2010).CrossRef
    M. W. Schmidt, “Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer,” Contrib. Mineral. Petrol. 110, 304–310 (1992).CrossRef
    S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc. Sp. Publ. 42, 313–345 (1989).CrossRef
    G. H. Symmes and J. M. Ferry, “The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism,” J. Metamorph. Geol. 10, 221–237 (1992).CrossRef
    S. R. Taylor, and S. M. McLennan, The Continental Crust: its Composition and Evolution (Blackwell, Oxford, 1985).
    S. R. Taylor and S. M. McLennan, “The geochemical evolution of the continental crust,” Rev. Geophys. 33, 241–265 (1995).CrossRef
    J. B. Thompson, “The graphical analysis of mineral assemblages in pelitic schists,” Am.Mineral. 42, 842–858 (1957).
    T. H. Torsvik, “The Rodinia Jigsaw puzzle,” Science 300, 1379–1381 (2003).CrossRef
    V. A. Vernikovsky and A. E. Vernikovskaya, “Tectonics and evolution of granitoid magmatism in the Yenisei Ridge,” Russ. Geol. Geophys. 47 (1), 35–50 (2006).
    V. A. Vernikovsky, A. Yu. Kazansky, N. Yu. Matushkin, D. V. Metelkin, and Yu. K. Sovetov, “The geodynamic evolution of the folded framing and the western margin of the Siberian craton in the Neoproterozoic: eological, structural, sedimentological, geochronological, and paleomagnetic data,” Russ. Geol. Geophys. 50 (4), 372–387(2009).CrossRef
    V. V. Vrublevsky, V. V. Reverdatto, A. E. Izokh, I. F. Gertner, D. S. Yudin, and P. A. Tishin, “Neoproterozoic carbonatite magmatism of the Yenisei Ridge, Central Siberia: 40Ar/39Ar geochronology of the Penchenga rock complex,” Dokl. Earth Sci. 437 (2), 443–448 (2011).CrossRef
    D. L. Whitney and B. W. Evans, “Abbreviations for names of rock-forming minerals,” Am. Mineral. 95, 185–187 (2010).CrossRef
    S. Wolfram, The Mathematica Book, 5th Ed. (Wolfram Media Inc., Champaign IL, 2003).
    D. A. Wood, “The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province,” Earth Planet. Sci. Lett. 50, 11–30 (1980).CrossRef
    C. M. Wu and G. C. Zhao, “Recalibration of the garnet–muscovite (GM) geothermometer and the garnet–muscovite–plagioclase–quartz (GMPQ) geobarometer for metapelitic assemblages,” J. Petrol. 47, 23570–2368 (2006).CrossRef
    C. M. Wu and G. C. Zhao, “The metapelitic garnet–biotite–muscovite–aluminosilicate–quartz (GBMAQ) geobarometer,” Lithos 97, 365–372 (2007).CrossRef
    C. M. Wu, J. Zhang, and L. D. Ren, “Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium–to high–grade metapelites,” J. Petrol. 45, 1907–1921 (2004).CrossRef
    D. S. Yudin, A. A. Tomilenko, A. V. Travin, A. M. Agashev, N. P. Pokhilenko, and Yu. Orihashi, “The age of Udachnaya-East kimberlite: U/Pb and 40Ar/39Ar data,” Dokl. Earth Sci. 455(1), 288–290 (2014).CrossRef
    Ya. E. Yudovich, and M. P. Ketris, Principles of Lithochemistry (Nauka. St. Petersburg, 2000) [in Russian].
    E. A. Zvyagina, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Irkutsk. Gos. Univ., Itrkutsk, 1989).
  • 作者单位:I. I. Likhanov (1)
    V. V. Reverdatto (1)

    1. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia
  • 刊物主题:Geochemistry;
  • 出版者:Springer US
  • ISSN:1556-1968
文摘
The mineralogical, petrological, geochemical and geochronological data were used to evaluate the age and petrogenesis of compositionally contrasting metamorphic rocks at the junction between Meso-Neoproterozoic Transangarian structures and Archean-Paleoproterozoic complexes of the Angara–Kan inlier of the Yenisei Ridge. The studied metabasites and metapelites provide clues for understanding the evolution of the region. The magmatic protoliths of low-Ti metabasites were derived by melting of depleted (N-MORB) upper mantle, and their high-Ti counterparts are interpreted to have originated from an enriched mantle source (E-MORB). The petrogeochemical characteristics of protoliths of the metabasite dikes resemble those of within-plate basalts and ocean island tholeiites. The Fe- and Al-rich metapelites are redeposited and metamorphosed products of Precambrian weathering crusts of kaolinite and montmorillonite-chlorite-hydromica compositions. The Р–Т conditions of metamorphism (4.9–5.5 kbar/570–650°С for metabasites; 4.1–7.1 kbar/500–630°С for metapelites) correspond to epidote–amphibolite to amphibolite facies transition. The evolution of the Angara complex occurred in two stages. The early stage (1.18–0.85 Ga) is associated with Grenville tectonics and the late stage is correlated with accretion/collision episodes of the Valhalla orogeny, with the peaks at 810–790 and 730–720 Ma, and the final stage of the Neoproterozoic evolution of the orogen on the southwestern margin of the Siberian craton. The correlation of regional crustal processes with globalscale geological events in the Precambrian evolution of the Earth supports recent paleomagnetic reconstructions that allow a direct, long-lived (1400–600 Ma) spatial and temporal connection between Siberia, Laurentia, and Baltica, which have been parts of ancient supercontinents.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700