DNA with damage in both strands as affinity probes and nucleotide excision repair substrates
详细信息    查看全文
  • 作者:N. V. Lukyanchikova ; I. O. Petruseva ; A. N. Evdokimov…
  • 刊名:Biochemistry (Moscow)
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:81
  • 期:3
  • 页码:263-274
  • 全文大小:1,032 KB
  • 参考文献:1.Gillet, L. C., and Schaerer, O. D. (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair, Chem. Rev., 106, 253–276.CrossRef PubMed
    2.Hanawalt, P. C., and Spivak, G. (2008) Transcription-coupled DNA repair: two decades of progress and surprises, Nat. Rev. Mol. Cell Biol., 9, 958–970.CrossRef PubMed
    3.Petruseva, I. O., Evdokimov, A. N., and Lavrik, O. I. (2014) Molecular mechanism of global genome nucleotide excision repair, Acta Naturae, 6, 23–34.PubMed PubMedCentral
    4.Evdokimov, A., Petruseva, I., and Lavrik, O. I. (2014) Model DNA for investigation of mechanism of nucleotide excision repair, Biopolym. Cell, 30, 167–183.CrossRef
    5.Min, J. H., and Pavletich, N. P. (2000) Recognition of DNA damage by the Rad4 nucleotide excision repair protein, Nature, 449, 570–575.CrossRef
    6.Sugasawa, K., Akagi, J., Nishi, R., Iwai, S., and Hanaoka, F. (2009) Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning, Mol. Cell, 36, 642–653.CrossRef PubMed
    7.Chen, X., Velmurugu, Y., Zheng, G., Park, B., Shim, Y., Kim, Y., Liu, L., Van Houten, B., He, C., Ansari, A., and Min, J. H. (2015) Kinetic gating mechanism of DNA damage recognition by Rad4/XPC, Nat. Commun., 6, 1–10.
    8.Egly, J.-M., and Coin, F. (2011) A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor, DNA Repair, 10, 714–721.CrossRef PubMed
    9.Naegeli, H., and Sugasawa, K. (2011) The xeroderma pigmentosum pathway: decision tree analysis of DNA quality, DNA Repair, 10, 673–683.CrossRef PubMed
    10.Ziani, S., Nagy, Z., Alekseev, S., Soutoglou, E., Egly, J.-M., and Coin, F. (2014) Sequential and ordered assembly of a large DNA repair complex on undamaged chromatin, J. Cell Biol., 206, 589–598.CrossRef PubMed PubMedCentral
    11.Huang, J., and Sancar, A. (1994) Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts, J. Biol. Chem., 269, 19034–19040.PubMed
    12.Evdokimov, A., Petruseva, I., Tsidulko, A., Koroleva, L., Serpokrylova, I., Silnikov, V., and Lavrik, O. (2013) New synthetic substrates of mammalian nucleotide excision repair system, Nucleic Acids Res., 41, e123.CrossRef PubMed PubMedCentral
    13.Rechkunova, N. I., and Lavrik, O. I. (2010) Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair, Subcell. Biochem., 50, 251–277.CrossRef PubMed
    14.Maltseva, E. A., Rechkunova, N. I., Gillet, L. C., Petruseva, I. O., Scharer, O. D., and Lavrik, O. I. (2007) Crosslinking of the NER damage recognition proteins XPC-HR23B, XPA and RPA to photoreactive probes that mimic DNA damages, Biochim. Biophys. Acta, 1770, 781–789.CrossRef PubMed
    15.Evdokimov, A. N., Petruseva, I. O., Pestryakov, P. E., and Lavrik, O. I. (2011) Photoactivated DNA analogs of sub-strates of the nucleotide excision repair system and their interaction with proteins of NER-competent extract of HeLa cells. Synthesis and application of long model DNA, Biochemistry (Moscow), 76, 157–166.CrossRef
    16.Schaerer, O. D. (2003) Chemistry and biology of DNA repair, Angew. Chem. Int. Ed. Engl., 42, 2946–2974.CrossRef
    17.Sutherland, B. M., Bennett, P. V., Sidorkina, O., and Laval, J. (2000) Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation, Proc. Natl. Acad. Sci. USA, 97, 103–108.CrossRef PubMed PubMedCentral
    18.Sugasawa, K. (2006) XPC–HR23B expression and purification, Methods Enzymol., 408, 171–188.CrossRef PubMed
    19.Smeaton, M. B., Miller, P. S., Ketner, G., Les, A., and Hanakahi, L. A. (2007) Small-scale extracts for the study of nucleotide excision repair and non-homologous end joining, Nucleic Acids Res., 35, e152.CrossRef PubMed PubMedCentral
    20.Petruseva, I. O., Tikhanovich, I. S., Maltseva, E. A., Safronov, I. V., and Lavrik, O. I. (2009) Photoactivated DNA analogs of substrates of the nucleotide excision repair system and their interaction with proteins of NER-competent HeLa cell extract, Biochemistry (Moscow), 74, 491–501.CrossRef
    21.Lane, D., Prentki, P., and Chandler, M. (1992) Use of gel retardation to analyze protein–nucleic acid interactions, Microbiol. Rev., 56, 509–528.PubMed PubMedCentral
    22.Evdokimov, A. N. (2014) Design of Analogs of Substrates for the Nucleotide Excision Repair System and Analysis of Their Interaction with Cell Extract Proteins, PhD thesis, ICBFM SB Russian Academy of Sciences, Novosibirsk.
    23.Ilina, E. S., Khodyreva, S. N., Berezhnoy, A. E., Larin, S. S., and Lavrik, O. I. (2010) Tracking Ku antigen levels in cell extracts with DNA containing abasic sites, Mutat. Res., 685, 90–96.CrossRef PubMed
    24.Oksenych, V., and Coin, F. (2010) The long unwinding road: XPB and XPD helicases in damaged DNA opening, Cell Cycle, 9, 90–96.CrossRef PubMed
    25.Fan, L. (2013) How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases, Front. Biol., 8, 363–368.CrossRef
    26.Guggenheim, E. R., Xu, D., Zhang, C. X., Chang, P. V., and Lippard, S. J. (2009) Photoaffinity isolation and identification of proteins in cancer cell extracts that bind to platinum-modified DANN, Chembiochem, 10, 141–157.CrossRef PubMed PubMedCentral
    27.Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Pestryakov, P. E., Petruseva, I. O., Sugasawa, K., Chen, X., Min, J. H., and Lavrik, O. I. (2013) Comparative analysis of interaction of human and yeast DNA damage recognition complexes with damaged DNA in nucleotide excision repair, J. Biol. Chem., 288, 10936–10947.CrossRef PubMed PubMedCentral
    28.Liu, Y., Reeves, D., Kropachev, K., Cai, Y., Ding, S., Kolbanovskiy, M., Kolbanovskiy, A., Bolton, J., Broyde, S., Van Houten, B., and Geacintov, N. E. (2011) Resistance of bulky DNA lesions to nucleotide excision repair can result from extensive aromatic lesion-base stacking interactions, DNA Repair, 10, 684–696.CrossRef PubMed PubMedCentral
    29.Cosman, M., De los Santos, C., Fiala, R., Hingerty, B. E., Singh, S. B., Ibanez, V., Margulis, L. A., Live, D., Geacintov, N. E., and Broyde, S. (1992) Solution conformation of the major adduct between the carcinogen (+)-anti-benzo[a]pyrene diol epoxide and DNA, Proc. Natl. Acad. Sci. USA, 89, 1914–1918.CrossRef PubMed PubMedCentral
    30.Wolski, S. C., Kuper, J., Hazelmann, P., Truglio, J. J., Croteau, D. L., Van Houten, B., and Kisker, C. (2008) Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD, PLoS Biol., 6, e149.CrossRef PubMed PubMedCentral
    31.Kuper, J., Wolski, S. C., Michels, G., and Kisker, C. (2012) Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation, EMBO J., 31, 494–502.CrossRef PubMed PubMedCentral
    32.Mathieu, N., Kaczmarek, N., and Naegeli, H. (2010) Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase, Proc. Natl. Acad. Sci. USA, 107, 17545–17550.CrossRef PubMed PubMedCentral
    33.Yeo, J. E., Khoo, A., Fagbemi, A. F., and Schaerer, O. D. (2013) The efficiency of damage recognition and excision correlate with duplex destabilization induced by acetylaminofluorene adducts in human nucleotide excision repair, Chem. Res. Toxicol., 25, 2462–2468.CrossRef
    34.Lee, Y., Cai, Y., Mu, H., Broyde, S., Amin, S., Chen, X., Min, J., and Geacintov, N. E. (2014) The relationships between XPC binding to conformationally diverse DNA adducts and their excision by the human NER system: is there a correlation? DNA Repair, 19, 55–63.CrossRef PubMed PubMedCentral
    35.Colton, S. L., Xu, X. S., Wang, Y. A., and Wang, G. (2006) The involvement of ataxia-telangiectasia mutated protein activation in nucleotide excision repair, J. Biol. Chem., 281, 27117–27125.CrossRef PubMed
    36.Le May, N., Egly, J. M., and Coin, F. (2010) True lies: the double life of the nucleotide excision repair factors in tran-scription and DNA repair, J. Nucleic Acids, pii: 616342.
    37.Kauffmann, A., Rosselli, F., Lazar, V., Winnepenninckx, V., Mansuet-Lupo, A., Dessen, P., Van den Oord, J. J., Spatz, A., and Sarasin, A. (2008) High expression of DNA repair pathways is associated with metastasis in melanoma patients, Oncogene, 27, 565–573.CrossRef PubMed
  • 作者单位:N. V. Lukyanchikova (1) (2)
    I. O. Petruseva (1)
    A. N. Evdokimov (1)
    V. N. Silnikov (1)
    O. I. Lavrik (1) (2) (3)

    1. Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
    2. Novosibirsk State University, 630090, Novosibirsk, Russia
    3. Altai State University, 656049, Barnaul, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Bioorganic Chemistry
    Microbiology
    Biomedicine
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3040
文摘
Nucleotide excision repair (NER) is a multistep process of recognition and elimination of a wide spectrum of damages that cause significant distortions in DNA structure, such as UV-induced damage and bulky chemical adducts. A series of model DNAs containing new bulky fluoro-azidobenzoyl photoactive lesion dCFAB and well-recognized nonnucleoside lesions nFlu and nAnt have been designed and their interaction with repair proteins investigated. We demonstrate that modified DNA duplexes dCFAB/dG (probe I), dCFAB/nFlu+4 (probe II), and dCFAB/nFlu−3 (probe III) have increased (as compared to unmodified DNA, umDNA) structure-dependent affinity for XPC—HR23B (Kd um > Kd I > Kd II ≈ Kd III ) and differentially crosslink to XPC and proteins of NER-competent extracts. The presence of dCFAB results in (i) decreased melting temperature (ΔTm = −3°C) and (ii) 12° DNA bending. The extended dCFAB/dG-DNA (137 bp) was demonstrated to be an effective NER substrate. Lack of correlation between the affinity to XPC—HR23B and substrate properties of the model DNA suggests a high impact of the verification stage on the overall NER process. In addition, DNAs containing closely positioned, well-recognized lesions in the complementary strands represent hardly repairable (dCFAB/nFlu+4, dCFAB/nFlu−3) or irreparable (nFlu/nFlu+4, nFlu/nFlu−3, nAnt/nFlu+4, nAnt/nFlu−3) structures. Our data provide evidence that the NER system of higher eukaryotes recognizes and eliminates damaged DNA fragments on a multi-criterion basis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700