Microfluidics-generated graphene oxide microspheres and their application to removal of perfluorooctane sulfonate from polluted water
详细信息    查看全文
  • 作者:Changwei Zhao ; Jing Fan ; Dong Chen ; Yi Xu ; Tao Wang
  • 关键词:microfluidic ; graphene oxide ; perfluorooctane sulfonate (PFOS) ; adsorption ; water treatment
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:3
  • 页码:866-875
  • 全文大小:1,903 KB
  • 参考文献:[1]Quiñones, O.; Snyder, S. Occurrence of perfluoroalkyl carboxylates and sulfonates in drinking water utilities and related waters from the United States. Environ. Sci. Technol. 2009, 43, 9089–9095.CrossRef
    [2]Beesoon, S.; Martin, J. W. Isomer-specific binding affinity of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) to serum proteins. Environ. Sci. Technol. 2015, 49, 5722–5731.CrossRef
    [3]Pual, A. G.; Jones, K. C.; Sweetman, A. J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ. Sci. Technol. 2009, 43, 386–392.CrossRef
    [4]Deng, S. B.; Zhou, Q.; Yu, G.; Huang, J.; Fan, Q. Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation. Water Res. 2011, 45, 1774–1780.CrossRef
    [5]Lasier, P. J.; Washington, J. W.; Hassan, S. M.; Jenkins, T. M. Perfluorinated chemicals in surface waters and sediments from northwest Georgia, USA, and their bioaccumulation in Lumbriculus variegatus. Environ. Toxicol. Chem. 2011, 30, 2194–2201.CrossRef
    [6]Lupton, S. J.; Huwe, J. K.; Smith, D. J.; Dearfield, L. L.; Johnston, J. J. Distribution and excretion of perfluorooctane sulfonate (PFOS) in beef cattle (Bos taurus). J. Agric. Food Chem. 2014, 62, 1167–1173.CrossRef
    [7]Hansmeier, N.; Chao, T. C.; Herbstman, J. B.; Goldman, L. R.; Witter, F. R.; Halden, R. U. Elucidating the molecular basis of adverse health effects from exposure to anthropogenic polyfluorinated compounds using toxicoproteomic approaches. J. Proteome Res. 2015, 14, 51–58.CrossRef
    [8]Cressey, D. Manufacturing chemicals may damage the immune system. Nature News [Online], Jan 24, 2012. http://​www.​nature.​com/​news/​manufacturing-chemicals-maydamage-the-immune-system-1.​9877 (accessed Nov 20, 2015).
    [9]Eschauzier, C.; Beerendonk, E.; Scholte-Veenendaal, P.; de Voogt, P. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain. Environ. Sci. Technol. 2012, 46, 1708–1715.CrossRef
    [10]Wang, T.; Wang, Y. W.; Liao, C. Y.; Cai, Y. Q.; Jiang, G. B. Perspectives on the inclusion of perfluorooctane sulfonate into the stockholm convention on persistent organic pollutants. Environ. Sci. Technol. 2009, 43, 5171–5175.CrossRef
    [11]Yan, T. T.; Chen, H.; Jiang, F.; Wang, X. Adsorption of perfluorooctane sulfonate and perfluorooctanoic acid on magnetic mesoporous carbon nitride. J. Chem. Eng. Data 2014, 59, 508–515.CrossRef
    [12]Gao, Y.; Fu, J. J.; Cao, H. M.; Wang, Y. W.; Zhang, A. Q.; Liang, Y.; Wang, T.; Zhao, C. Y.; Jiang, G. B. Differential accumulation and elimination behavior of perfluoroalkyl acid isomers in occupational workers in a manufactory in China. Environ. Sci. Technol. 2015, 49, 6953–6962.CrossRef
    [13]Fu, Z. Q.; Wang, Y.; Wang, Z. Y.; Xie, H. B.; Chen, J. W. Transformation pathways of isomeric perfluorooctanesulfonate precursors catalyzed by the active species of P450 enzymes: In silico investigation. Chem. Res. Toxicol. 2015, 28, 482–489.CrossRef
    [14]Wang, T.; Zhao, C. W.; Li, P.; Li, Y.; Wang, J. Fabrication of novel poly(m-phenylene isophthalamide) hollow fiber nanofiltration membrane for effective removal of trace amount perfluorooctane sulfonate from water. J. Membr. Sci. 2015, 477, 74–85.CrossRef
    [15]Arvaniti, O. S.; Hwang, Y.; Andersen, H. R.; Stasinakis, A. S.; Thomaidis, N. S.; Aloupi, M. Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron. Chem. Eng. J. 2015, 262, 133–139.CrossRef
    [16]Lin, H.; Wang, Y. J.; Niu, J. F.; Yue, Z. H.; Huang, Q. G. Efficient sorption and removal of perfluoroalkyl acids (PFAAs) from aqueous solution by metal hydroxides generated in situ by electrocoagulation. Environ. Sci. Technol. 2015, 49, 10562–10569.CrossRef
    [17]Lyu, X. J.; Li, W. W.; Lam, P. K. S.; Yu, H. Q. Insights into perfluorooctane sulfonate photodegradation in a catalystfree aqueous solution. Sci. Rep. 2015, 5, 9353.CrossRef
    [18]Kleinstreuer, N. C.; Yang, J.; Berg, E. L.; Knudsen, T. B.; Richard, A. M.; Martin, M. T.; Reif, D. M.; Judson, R. S.; Polokoff, M.; Dix, D. J. et al. Phenotypic screening of the toxcast chemical library to classify toxic and therapeutic mechanisms. Nat. Biotechnol. 2014, 32, 583–591.CrossRef
    [19]Zhang, Q. Y.; Deng, S. B.; Yu, G.; Huang, J. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechamism. Bio. Technol. 2011, 102, 2265–2271.CrossRef
    [20]Higgins, C. P.; Luthy, R. G. Sorption of perfluorinated surfactants on sediments. Environ. Sci. Technol. 2006, 40, 7251–7256.CrossRef
    [21]Li, X. N.; Chen, S.; Quan, X.; Zhang, Y. B. Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance. Environ. Sci. Technol. 2011, 45, 8498–8505.CrossRef
    [22]Liu, A. D.; Goktekin, E.; Gleason, K. K. Cross-linking and ultrathin grafted gradation of fluorinated polymers synthesized via initiated chemical vapor deposition to prevent surface reconstruction. Langmuir 2014, 30, 14189–14194.CrossRef
    [23]Yu, Q.; Zhang, R. Q.; Deng, S. B.; Huang, J.; Yu, G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Res. 2009, 43, 1150–1158.CrossRef
    [24]Xia, X. H.; Chen, X.; Zhao, X. L.; Chen, H. T.; Shen, M. H. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment. Environ. Sci. Technol. 2012, 46, 12467–12475.CrossRef
    [25]Xu, J.; Wang, L.; Zhu, Y. F. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 2012, 28, 8418–8425.CrossRef
    [26]Pal, S. K. Versatile photoluminescence from graphene and its derivatives. Carbon 2015, 88, 86–112.CrossRef
    [27]Wang, X. B.; Huang, S. S.; Zhu, L. H.; Tian, X. L.; Li, S. H.; Tang, H. Q. Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds. Carbon 2014, 69, 101–112.CrossRef
    [28]Li, Y. H.; Du, Q. J.; Liu, T. H.; Sun, J. K.; Jiao, Y. Q.; Xia, Y. Z.; Xia, L. H.; Wang, Z. H.; Zhang, W.; Wang, K. L. et al. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater. Res. Bull. 2012, 47, 1898–1904.CrossRef
    [29]Liu, T. H.; Li, Y. H.; Du, Q. J.; Sun, J. K.; Jiao, Y. Q.; Yang, G. M.; Wang, Z. H.; Xia, Y. Z.; Zhang, W.; Wang, K. L. et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf. B Biointerfaces 2012, 90, 197–203.CrossRef
    [30]Carreño, N. L. V.; Escote, M. T.; Valentini, A.; McCafferty, L.; Stolojan, V.; Beliatis, M.; Mills, C. A.; Rhodes, R.; Smith, C. T. G.; Silva, S. R. P. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles. Nanoscale 2015, 7, 17441–17449.CrossRef
    [31]Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. X. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180–8186.CrossRef
    [32]Madadrang, C. J.; Kim, H. Y.; Gao, G. H.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M. L.; Hou, S. F. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl. Mater. Interfaces 2012, 4, 1186–1193.CrossRef
    [33]Wang, W.; Zhang, M. J.; Chu, L. Y. Microfluidic approach for encapsulation via double emulsions. Curr. Opin. Pharmacol. 2014, 18, 35–41.CrossRef
    [34]Abate, A. R.; Kutsovsky, M.; Seiffert, S.; Windbergs, M.; Pinto, L. F. V.; Rotem, A.; Utada, A. S.; Weitz, D. A. Synthesis of monodisperse microparticles from non-newtonian polymer solutions with microfluidic devices. Adv. Mater. 2011, 23, 1757–1760.CrossRef
    [35]Kim, S. H.; Weitz, D. A. One-step emulsification of multiple concentric shells with capillary microfluidic devices. Angew. Chem. 2011, 123, 8890–8893.CrossRef
    [36]Chen, L. D.; Lai, C.-Z.; Granda, L. P.; Fierke, M. A.; Mandal, D.; Stein, A.; Gladysz, J. A.; Bühlmann, P. Fluorous membrane ion-selective electrodes for perfluorinated surfactants: Trace-level detection and in situ monitoring of adsorption. Anal. Chem. 2013, 85, 7471–7477.CrossRef
    [37]Abolhasani, M.; Günther, A.; Kumacheva, E. Microfluidic studies of carbon dioxide. Angew. Chem., Int. Ed. 2014, 53, 7992–8002.CrossRef
    [38]Abou-Hassan, A.; Sandre, O.; Cabuil, V. Microfluidics in inorganic chemistry. Angew. Chem., Int. Ed. 2010, 49, 6268–6286.CrossRef
    [39]Lewis, G. G.; DiTucci, M. J.; Phillips, S. T. Quantifying analytes in paper-based microfluidic devices without using external electronic readers. Angew. Chem., Int. Ed. 2012, 51, 12707–12710.CrossRef
    [40]Safavieh, M.; Qasaimeh, M. A.; Vakil, A.; Juncker, D.; Gervais, T. Erratum: Two-aperture microfluidic probes as flow dipoles: Theory and applications. Sci. Rep. 2015, 5, 14885.CrossRef
    [41]Ng, A. H. C.; Chamberlain, M. D.; Situ, H.; Lee, V.; Wheeler, A. R. Digital microfluidic immunocytochemistry in single cells. Nat. Commun. 2015, 6, 7513.CrossRef
    [42]Yan, J.; Hu, M.; Li, D.; He, Y.; Zhao, R.; Jiang, X. Y.; Song, S. P.; Wang, L. H.; Fan, C. H. A nano- and microintegrated protein chip based on quantum dot probes and a microfluidic network. Nano Res. 2008, 1, 490–496.CrossRef
    [43]Li, S. W.; Xu, J. H.; Wang, Y. J.; Luo, G. S. Controllable preparation of nanoparticles by drops and plugs flow in a microchannel device. Langmuir 2008, 24, 4194–4199.CrossRef
    [44]Zhao, Y. J.; Gu, H. C.; Xie, Z. Y.; Shum, H. C.; Wang, B. P.; Gu, Z. Z. Bioinspired multifunctional Janus particles for droplet manipulation. J. Am. Chem. Soc. 2013, 135, 54–57.CrossRef
    [45]Jeong, W. C.; Lim, J. M.; Choi, J. H.; Kim, J. H.; Lee, Y. J.; Kim, S. H.; Lee, G.; Kim, J. D.; Yi, G. R.; Yang, S. M. Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices. Lab Chip 2012, 12, 1446–1453.CrossRef
    [46]Persson, H.; Beech, J. P.; Samuelson, L.; Oredsson, S.; Prinz, C. N.; Tegenfeldt, J. O. Vertical oxide nanotubes connected by subsurface microchannels. Nano Res. 2012, 5, 190–198.CrossRef
    [47]Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.CrossRef
    [48]Spyrou, K.; Calvaresi, M.; Diamanti, E. K.; Tsoufis, T., Gournis, D.; Rudolf, P.; Zerbetto, F. Graphite oxide and aromatic amines: Size matters. Adv. Funct. Mater. 2015, 25, 263–269.CrossRef
    [49]Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. Radical addition of perfluorinated alkyl iodides to multi-layered graphene and single-walled carbon nanotubes. Nano Res. 2010, 3, 138–145.CrossRef
  • 作者单位:Changwei Zhao (1) (2)
    Jing Fan (2)
    Dong Chen (2)
    Yi Xu (1)
    Tao Wang (3)

    1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
    2. School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA, 02138, USA
    3. The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Monodisperse graphene oxide (GO) microspheres were synthesized via microfluidics technology as a novel adsorbent for rapid (in 2 min) and high efficiency (98%) removal of perfluorooctane sulfonate (PFOS) from water. This novel material is a potential solution for treatment of bioaccumulative organic polluted water. To achieve improved performance, Mg2+ was introduced into GO, and the metal composite exhibited significantly improved PFOS removal efficiency owing to bridging and interaction between Mg2+ and the PFOS molecules, which was supported by density functional theory and X-ray photoelectron spectroscopy (XPS). This facile strategy may be extended to the synthesis of other spheres with unique structural features for application in water treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700