12,14-PGJ2 (15d-PGJ2) and thiazolidinedione attenuate reactive oxygen species (ROS) production via a peroxisome proliferator-activated receptor-gamma (PPAR-γ)-dependent pathway. Nonetheless, how PPAR-γ mediates ROS production to ameliorate ischemic brain injury is not clear. Recent studies indicated that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the major source of ROS in the vascular system. In the present study, we used an in vitro oxygen–glucose deprivation and reoxygenation (hypoxia reoxygenation [HR]) paradigm to study whether PPAR-γ interacts with NADPH oxidase, thereby regulating ROS formation in cerebral endothelial cells (CECs). With pharmacological (PPAR-γ antagonist GW9662), loss-of-function (PPAR-γ siRNA), and gain-of-function (Ad-PPAR-γ) approaches, we first demonstrated that 15d-PGJ2 protected HR-treated CECs against ROS-induced apoptosis in a PPAR-γ-dependent manner. Results of promoter and subcellular localization analyses further revealed that 15d-PGJ2, by activating PPAR-γ, blocked HR-induced NF-κB nuclear translocation, which led to inhibited transcription of the NADPH oxidase subunit p22phox. In summary, we report a novel transrepression mechanism whereby PPAR-γ downregulates hypoxia-activated p22phox transcription and the subsequent NADPH oxidase activation, ROS formation, and CEC apoptosis." />
15-Deoxy-?sup class="a-plus-plus">12,14-PGJ2, by Activating Peroxisome Proliferator-Activated Receptor-Gamma, Suppresses p22phox Transcription to Protect Brain Endothelial Cells Against Hypoxia-Induced Apoptosis
详细信息    查看全文
  • 作者:Jui-Sheng Wu ; Hsin-Da Tsai ; Chien-Yu Huang ; Jin-Jer Chen…
  • 关键词:Gene regulation ; Nox2 ; NF ; κB ; Superoxide dismutase 1 ; Oxygen–glucose deprivation
  • 刊名:Molecular Neurobiology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:50
  • 期:1
  • 页码:221-238
  • 全文大小:5,165 KB
  • 参考文献:1. Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee YS, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, Gonzalez M, Chan PH (2005) Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 31(1-):105-16. doi:10.1385/mn:31:1-3:105 CrossRef
    2. Wong CH, Crack PJ (2008) Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med Chem 15(1):1-4 CrossRef
    3. Sun AY, Wang Q, Simonyi A, Sun GY (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41(2-):375-83. doi:10.1007/s12035-010-8111-y CrossRef
    4. Yenari MA, Kauppinen TM, Swanson RA (2010) Microglial activation in stroke: therapeutic targets. Neurotherapeutics 7(4):378-91. doi:10.1016/j.nurt.2010.07.005 CrossRef
    5. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14(8):1505-517. doi:10.1089/ars.2010.3576 CrossRef
    6. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245-13. doi:10.1152/physrev.00044.2005 CrossRef
    7. Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10(6):453-71. doi:10.1038/nrd3403 CrossRef
    8. Kahles T, Brandes RP (2013) Which NADPH oxidase isoform is relevant for ischemic stroke? The case for nox 2. Antioxid Redox Signal 18(12):1400-417. doi:10.1089/ars.2012.4721 CrossRef
    9. Green SP, Cairns B, Rae J, Errett-Baroncini C, Hongo JA, Erickson RW, Curnutte JT (2001) Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation. J Cereb Blood Flow Metab 21(4):374-84. doi:10.1097/00004647-200104000-00006 CrossRef
    10. Kusaka I, Kusaka G, Zhou C, Ishikawa M, Nanda A, Granger DN, Zhang JH, Tang J (2004) Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. Am J Physiol Heart Circ Physiol 286(6):H2442-451. doi:10.1152/ajpheart.01169.2003 CrossRef
    11. Miller AA, Dusting GJ, Roulston CL, Sobey CG (2006) NADPH-oxidase activity is elevated in penumbral and non-ischemic cerebral arteries following stroke. Brain Res 1111(1):111-16. doi:10.1016/j.brainres.2006.06.082 CrossRef
    12. Raz L, Zhang QG, Zhou CF, Han D, Gulati P, Yang LC, Yang F, Wang RM, Brann DW (2010) Role of Rac1 GTPase in NADPH oxidase activation and cognitive impairment following cerebral ischemia in the rat. PLoS One 5(9):e12606. doi:10.1371/journal.pone.0012606 CrossRef
    13. Yoshioka H, Niizuma K, Katsu M, Okami N, Sakata H, Kim GS, Narasimhan P, Chan PH (2011) NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab 31(3):868-80. doi:10.1038/jcbfm.2010.166 CrossRef
    14. Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF (2006) Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 291(5):H2210-215. doi:10.1152/ajpheart.01270.2005 CrossRef
    15. Tang LL, Ye K, Yang XF, Zheng JS (2007) Apocynin attenuates cerebral infarction after transient focal ischaemia in rats. J Int Med Res 35(4):517-22 CrossRef
    16. Tang XN, Cairns B, Cairns N, Yenari MA (2008) Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience 154(2):556-62. doi:10.1016/j.neuroscience.2008.03.090 CrossRef
    17. Jackman KA, Miller AA, De Silva TM, Crack PJ, Drummond GR, Sobey CG (2009) Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. Br J Pharmacol 156(4):680-88. doi:10.1111/j.1476-5381.2008.00073.x CrossRef
    18. Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28(11):2252-258 CrossRef
    19. Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38(11):3000-006. doi:10.1161/strokeaha.107.489765 CrossRef
    20. Suh SW, Shin BS, Ma H, Van Hoecke M, Brennan AM, Yenari MA, Swanson RA (2008) Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol 64(6):654-63. doi:10.1002/ana.21511 CrossRef
    21. Chen H, Song YS, Chan PH (2009) Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J Cereb Blood Flow Metab 29(7):1262-272. doi:10.1038/jcbfm.2009.47 CrossRef
    22. Chen H, Kim GS, Okami N, Narasimhan P, Chan PH (2011) NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis 42(3):341-48. doi:10.1016/j.nbd.2011.01.027 CrossRef
    23. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 5(5):347-60. doi:10.1038/nrn1387 CrossRef
    24. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67(2):181-98. doi:10.1016/j.neuron.2010.07.002 CrossRef
    25. Zhang L, Zhang ZG, Chopp M (2012) The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci 33(8):415-22. doi:10.1016/j.tips.2012.04.006 CrossRef
    26. Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR (2008) NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 120(3):254-91. doi:10.1016/j.pharmthera.2008.08.005 CrossRef
    27. Bordet R, Ouk T, Petrault O, Gele P, Gautier S, Laprais M, Deplanque D, Duriez P, Staels B, Fruchart JC, Bastide M (2006) PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 34(Pt 6):1341-346. doi:10.1042/bst0341341
    28. Culman J, Zhao Y, Gohlke P, Herdegen T (2007) PPAR-gamma: therapeutic target for ischemic stroke. Trends Pharmacol Sci 28(5):244-49. doi:10.1016/j.tips.2007.03.004 CrossRef
    29. Collino M, Patel NS, Thiemermann C (2008) PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury. Ther Adv Cardiovasc Dis 2(3):179-97. doi:10.1177/1753944708090924 CrossRef
    30. Giaginis C, Tsourouflis G, Theocharis S (2008) Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands: novel pharmacological agents in the treatment of ischemia reperfusion injury. Curr Mol Med 8(6):562-79 CrossRef
    31. Kapadia R, Yi JH, Vemuganti R (2008) Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci 13:1813-826 CrossRef
    32. Wu JS, Cheung WM, Tsai YS, Chen YT, Fong WH, Tsai HD, Chen YC, Liou JY, Shyue SK, Chen JJ, Chen YE, Maeda N, Wu KK, Lin TN (2009) Ligand-activated peroxisome proliferator-activated receptor-gamma protects against ischemic cerebral infarction and neuronal apoptosis by 14-3-3 epsilon upregulation. Circulation 119(8):1124-134. doi:10.1161/circulationaha.108.812537 CrossRef
    33. Fong WH, Tsai HD, Chen YC, Wu JS, Lin TN (2010) Anti-apoptotic actions of PPAR-gamma against ischemic stroke. Mol Neurobiol 41(2-):180-86. doi:10.1007/s12035-010-8103-y CrossRef
    34. Chen YC, Wu JS, Tsai HD, Huang CY, Chen JJ, Sun GY, Lin TN (2012) Peroxisome proliferator-activated receptor gamma (PPAR-gamma) and neurodegenerative disorders. Mol Neurobiol 46(1):114-24. doi:10.1007/s12035-012-8259-8 CrossRef
    35. Inoue I, Goto S, Matsunaga T, Nakajima T, Awata T, Hokari S, Komoda T, Katayama S (2001) The ligands/activators for peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma increase Cu2+, Zn2--superoxide dismutase and decrease p22phox message expressions in primary endothelial cells. Metabolism 50(1):3-1 CrossRef
    36. Nakamura T, Yamamoto E, Kataoka K, Yamashita T, Tokutomi Y, Dong YF, Matsuba S, Ogawa H, Kim-Mitsuyama S (2007) Pioglitazone exerts protective effects against stroke in stroke-prone spontaneously hypertensive rats, independently of blood pressure. Stroke 38(11):3016-022. doi:10.1161/strokeaha.107.486522 CrossRef
    37. Hwang J, Kleinhenz DJ, Lassegue B, Griendling KK, Dikalov S, Hart CM (2005) Peroxisome proliferator-activated receptor-gamma ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol 288(4):C899-05. doi:10.1152/ajpcell.00474.2004 CrossRef
    38. Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, Pagnin E, Fadini GP, Albiero M, Semplicini A, Avogaro A (2007) Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol 27(12):2627-633. doi:10.1161/atvbaha.107.155762 CrossRef
    39. Potenza MA, Gagliardi S, De Benedictis L, Zigrino A, Tiravanti E, Colantuono G, Federici A, Lorusso L, Benagiano V, Quon MJ, Montagnani M (2009) Treatment of spontaneously hypertensive rats with rosiglitazone ameliorates cardiovascular pathophysiology via antioxidant mechanisms in the vasculature. Am J Physiol Endocrinol Metab 297(3):E685-94. doi:10.1152/ajpendo.00291.2009 CrossRef
    40. Hu CJ, Chen SD, Yang DI, Lin TN, Chen CM, Huang TH, Hsu CY (2006) Promoter region methylation and reduced expression of thrombospondin-1 after oxygen-glucose deprivation in murine cerebral endothelial cells. J Cereb Blood Flow Metab 26(12):1519-526. doi:10.1038/sj.jcbfm.9600304 CrossRef
    41. Goldberg MP, Choi DW (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13(8):3510-524
    42. Wu JS, Lin TN, Wu KK (2009) Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. J Cell Physiol 220(1):58-1. doi:10.1002/jcp.21730 CrossRef
    43. Wang Y, Lou MF (2009) The regulation of NADPH oxidase and its association with cell proliferation in human lens epithelial cells. Invest Ophthalmol Vis Sci 50(5):2291-300. doi:10.1167/iovs.08-2568 CrossRef
    44. Lin H, Lin TN, Cheung WM, Nian GM, Tseng PH, Chen SF, Chen JJ, Shyue SK, Liou JY, Wu CW, Wu KK (2002) Cyclooxygenase-1 and bicistronic cyclooxygenase-1/prostacyclin synthase gene transfer protect against ischemic cerebral infarction. Circulation 105(16):1962-969 CrossRef
    45. Lin TN, Nian GM, Chen SF, Cheung WM, Chang C, Lin WC, Hsu CY (2001) Induction of Tie-1 and Tie-2 receptor protein expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 21(6):690-01. doi:10.1097/00004647-200106000-00007 CrossRef
    46. Dinauer MC, Pierce EA, Bruns GA, Curnutte JT, Orkin SH (1990) Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest 86(5):1729-737. doi:10.1172/jci114898 CrossRef
    47. Guzik TJ, West NE, Black E, McDonald D, Ratnatunga C, Pillai R, Channon KM (2000) Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis. Circulation 102(15):1744-747 CrossRef
    48. Ito D, Murata M, Watanabe K, Yoshida T, Saito I, Tanahashi N, Fukuuchi Y (2000) C242T polymorphism of NADPH oxidase p22 PHOX gene and ischemic cerebrovascular disease in the Japanese population. Stroke 31(4):936-39 CrossRef
    49. Krex D, Ziegler A, Konig IR, Schackert HK, Schackert G (2003) Polymorphisms of the NADPH oxidase P22PHOX gene in a Caucasian population with intracranial aneurysms. Cerebrovasc Dis 16(4):363-68 CrossRef
    50. Shimo-Nakanishi Y, Hasebe T, Suzuki A, Mochizuki H, Nomiyama T, Tanaka Y, Nagaoka I, Mizuno Y, Urabe T (2004) Functional effects of NAD(P)H oxidase p22(phox) C242T mutation in human leukocytes and association with thrombotic cerebral infarction. Atherosclerosis 175(1):109-15. doi:10.1016/j.atherosclerosis.2004.01.043 CrossRef
    51. Khan U, Bevan S, Markus HS (2007) NADPH oxidase polymorphisms in cerebral small vessel disease. Cerebrovasc Dis 24(1):135-38. doi:10.1159/000103615 CrossRef
    52. Kuroda J, Kitazono T, Ago T, Ninomiya T, Ooboshi H, Kamouchi M, Kumai Y, Hagiwara N, Yoshimura S, Tamaki K, Kusuda K, Fujii K, Nagao T, Okada Y, Toyoda K, Nakane H, Sugimori H, Yamashita Y, Wakugawa Y, Asano K, Tanizaki Y, Kiyohara Y, Ibayashi S, Iida M (2007) NAD(P)H oxidase p22phox C242T polymorphism and ischemic stroke in Japan: the Fukuoka Stroke Registry and the Hisayama study. Eur J Neurol 14(10):1091-097. doi:10.1111/j.1468-1331.2007.01904.x CrossRef
    53. Genius J, Grau AJ, Lichy C (2008) The C242T polymorphism of the NAD(P)H oxidase p22phox subunit is associated with an enhanced risk for cerebrovascular disease at a young age. Cerebrovasc Dis 26(4):430-33. doi:10.1159/000155639 CrossRef
    54. Niemiec P, Zak I, Emich-Widera E, Balcerzyk A, Kopyta I, Nowak T, Wendorff J, Palatynska K, Kacinski M, Pienczk-Reclawowicz K, Pilarska E (2010) The C242T polymorphism of the gene encoding cytochrome b-245 alpha is not associated with paediatric ischaemic stroke: family-based and case-control study. Neurol Neurochir Pol 44(5):453-58
    55. Li BH, Zhang LL, Zhang BB, Yin YW, Dai LM, Pi Y, Guo L, Gao CY, Fang CQ, Wang JZ, Li JC (2013) Association between NADPH oxidase p22(phox) C242T polymorphism and ischemic cerebrovascular disease: a meta-analysis. PLoS One 8(2):e56478. doi:10.1371/journal.pone.0056478 CrossRef
    56. Yin KJ, Chen SD, Lee JM, Xu J, Hsu CY (2002) ATM gene regulates oxygen-glucose deprivation-induced nuclear factor-kappaB DNA-binding activity and downstream apoptotic cascade in mouse cerebrovascular endothelial cells. Stroke 33(10):2471-477 CrossRef
    57. Narasimhan P, Liu J, Song YS, Massengale JL, Chan PH (2009) VEGF Stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40(4):1467-473. doi:10.1161/strokeaha.108.534644 CrossRef
    58. Lin TN, Cheung WM, Wu JS, Chen JJ, Lin H, Chen JJ, Liou JY, Shyue SK, Wu KK (2006) 15d-prostaglandin J2 protects brain from ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 26(3):481-87. doi:10.1161/01.ATV.0000201933.53964.5b CrossRef
    59. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47-5. doi:10.1152/physrev.00018.2001
    60. Jung JE, Kim GS, Chen H, Maier CM, Narasimhan P, Song YS, Niizuma K, Katsu M, Okami N, Yoshioka H, Sakata H, Goeders CE, Chan PH (2010) Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol 41(2-):172-79. doi:10.1007/s12035-010-8102-z CrossRef
    61. Manea A, Manea SA, Gafencu AV, Raicu M (2007) Regulation of NADPH oxidase subunit p22(phox) by NF-kB in human aortic smooth muscle cells. Arch Physiol Biochem 113(4-):163-72. doi:10.1080/13813450701531235 CrossRef
    62. Li D, Ueta E, Kimura T, Yamamoto T, Osaki T (2004) Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci 95(8):644-50 CrossRef
    63. Yin KJ, Fan Y, Hamblin M, Zhang J, Zhu T, Li S, Hawse JR, Subramaniam M, Song CZ, Urrutia R, Lin JD, Chen YE (2013) KLF11 mediates PPARgamma cerebrovascular protection in ischaemic stroke. Brain 136(Pt 4):1274-287. doi:10.1093/brain/awt002 CrossRef
    64. Yin KJ, Deng Z, Hamblin M, Xiang Y, Huang H, Zhang J, Jiang X, Wang Y, Chen YE (2010) Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci 30(18):6398-408. doi:10.1523/jneurosci.0780-10.2010 CrossRef
  • 作者单位:Jui-Sheng Wu (1)
    Hsin-Da Tsai (1) (2)
    Chien-Yu Huang (1)
    Jin-Jer Chen (1)
    Teng-Nan Lin (1) (2) (3)

    1. Institute of Biomedical Sciences, Academia Sinica, Rm 404, Taipei, 11529, Taiwan, Republic of China
    2. Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
    3. Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, Republic of China
  • ISSN:1559-1182
文摘
15-Deoxy-?sup class="a-plus-plus">12,14-PGJ2 (15d-PGJ2) and thiazolidinedione attenuate reactive oxygen species (ROS) production via a peroxisome proliferator-activated receptor-gamma (PPAR-γ)-dependent pathway. Nonetheless, how PPAR-γ mediates ROS production to ameliorate ischemic brain injury is not clear. Recent studies indicated that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the major source of ROS in the vascular system. In the present study, we used an in vitro oxygen–glucose deprivation and reoxygenation (hypoxia reoxygenation [HR]) paradigm to study whether PPAR-γ interacts with NADPH oxidase, thereby regulating ROS formation in cerebral endothelial cells (CECs). With pharmacological (PPAR-γ antagonist GW9662), loss-of-function (PPAR-γ siRNA), and gain-of-function (Ad-PPAR-γ) approaches, we first demonstrated that 15d-PGJ2 protected HR-treated CECs against ROS-induced apoptosis in a PPAR-γ-dependent manner. Results of promoter and subcellular localization analyses further revealed that 15d-PGJ2, by activating PPAR-γ, blocked HR-induced NF-κB nuclear translocation, which led to inhibited transcription of the NADPH oxidase subunit p22phox. In summary, we report a novel transrepression mechanism whereby PPAR-γ downregulates hypoxia-activated p22phox transcription and the subsequent NADPH oxidase activation, ROS formation, and CEC apoptosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700