Endophytic colonization of Arabidopsis thaliana by Gluconacetobacter diazotrophicus and its effect on plant growth promotion, plant physiology, and activation of plant defense
详细信息    查看全文
  • 作者:A. L. S. Rangel de Souza ; S. A. De Souza ; M. V. V. De Oliveira…
  • 关键词:PGPB ; Endophytic bacteria ; BNF ; Plant defense ; Plant immunity ; G.diazotrophicus
  • 刊名:Plant and Soil
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:399
  • 期:1-2
  • 页码:257-270
  • 全文大小:1,441 KB
  • 参考文献:Aertsen A, Tesfazgi Mebrhatu M, Michiels CW (2008) Activation of the Salmonella typhimurium Mrr protein. Biochem Biophys Res Commun 367(2):435–439PubMed CrossRef
    Alquéres S, Meneses C, Rouws L, Rothballer M, Baldani I, Schmid M, Hartmann A (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol Plant-Microbe Interact 26:937–945PubMed CrossRef
    Anitha KG, Thangaraju M (2010) Growth promotion of rice seedling by Gluconacetobacter diazotrophicus under in vivo conditions. J Cell Plant Sci 1:6–12
    Baldani JI, Reis VM, Baldani VL, Döbereiner J (2002) Review: a brief story of nitrogen fixation in sugarcane—reasons for success in Brazil. Funct Plant Biol 29(4):417–423CrossRef
    Bastián F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11CrossRef
    Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18PubMed CrossRef
    Bertini EV, Peñalver CGN, Leguina AC, Irazusta VP, de Figueroa LI (2014) Gluconacetobacter diazotrophicus PAL5 possesses an active quorum sensing regulatory system. Antonie Van Leeuwenhoek 106(3):497–506PubMed CrossRef
    Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209PubMed CrossRef
    Blanco Y, Blanch M, Piñón D, Legaz ME, Vicente C (2005) Antagonism of Gluconacetobacter diazotrophicus (a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues. J Biosci Bioeng 99(4):366–371PubMed CrossRef
    Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200(2):558–569PubMed CrossRef
    Brock AK, Berger B, Mewis I, Ruppel S (2013) Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb Ecol 65(3):661–670PubMed CrossRef
    Burgess CM, Smid EJ, van Sinderen D (2009) Bacterial vitamin B2, B11 and B12 overproduction: an overview. Int J Food Microbiol 133:1–7PubMed CrossRef
    Caballero-Mellado J, Martinez-Romero E (1994) Limited genetic diversity in the endophytic sugarcane bacterium Acetobacter diazotrophicus. Appl Environ Microbiol 60(5):1532–1537PubMed PubMedCentral
    Carvalho TLG, Ferreira PCG, Hemerly AS (2011) Sugarcane genetic controls involved in the association with beneficial endophytic nitrogen fixing bacteria. Trop Plant Biol 4:31–41CrossRef
    Cavalcante VA, Dobereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31CrossRef
    Cavalcante JJ, Vargas C, Nogueira EM, Vinagre F, Schwarcz K, Baldani JI, Ferreira PC, Hemerly AS (2007) Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. J Exp Bot 58:673–686PubMed CrossRef
    Cocking EC, Stone PJ, Davey MR (2006) Intracellular colonization of roots of Arabidopsis and crop plants by Gluconacetobacter diazotrophicus. In Vitro Cell Dev Plant 42:74–82CrossRef
    Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRef
    del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82CrossRef
    Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266(5188):1247–1250PubMed CrossRef
    Denecke J, de Rycke R, Botterman J (1992) Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J 11:2345–2355PubMed PubMedCentral
    Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Genet 11:539–548CrossRef
    dos Santos MF, Muniz de Padua VL, de Matos NE, Hemerly AS, Domont GB (2010) Proteome of Gluconacetobacter diazotrophicus co-cultivated with sugarcane plantlets. J Proteome 73:917–931CrossRef
    Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209PubMed CrossRef
    Eskin N, Vessey K, Tian L (2014) Research progress and perspectives of nitrogen fixing bacterium, Gluconacetobacter diazotrophicus, in monocot plants. Int J Agron 2014:1–13CrossRef
    Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:7.1–7.25CrossRef
    Fuentes-Ramírez LE, Jimenez-Salgado T, Abarca-OCampo IR, Caballero-Mellado J (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of México. Plant Soil 154:145–150CrossRef
    Fuentes-Ramírez LE, Caballero-Mellado J, Sepúlveda J, Martínez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117–128CrossRef
    Galisa PS, da Silva HA, Macedo AV, Reis VM, Vidal MS, Baldani JI, Simões-Araújo JL (2012) Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR. J Microbiol Methods 91(1):1–7PubMed CrossRef
    Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephen MP, Teixeira KRS, Dobereiner J, de Ley J (1989) Acetobacter diazotrophicus sp. nov., a nitrogen acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364CrossRef
    Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471PubMed CrossRef
    Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42PubMed CrossRef
    Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular Calif Agric Exp Sta 347
    Hua J, Grisafi P, Cheng SH, Fink GR (2001) Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev 15:2263–2272PubMed PubMedCentral CrossRef
    Hunt MG, Rasmussen S, Newton PC, Parsons AJ, Newman JA (2005) Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on Lolium perenne L. growth, chemical composition and alkaloid production. Plant Cell Environ 28(11):1345–1354CrossRef
    Intorne AC, de Oliveira MV, Lima ML, da Silva JF, Olivares FL, de Souza Filho GA (2009) Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Arch Microbiol 191:477–483PubMed CrossRef
    James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17(1):77–119CrossRef
    James E, Reis V, Olivares F, Baldani J, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766CrossRef
    James EK, Olivares FL, de Oliveira ALM, dos Reis Jr FB, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760PubMed
    Jimenez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, Mascarua-Esparza MA, Martinez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen fixing acetobacteria. Appl Environ Microbiol 63(9):3676–3683PubMed PubMedCentral
    Kechid M, Desbrosses G, Rokhsi W, Varoquaux F, Djekoun A, Touraine B (2013) The NRT2.5 and NRT2.6 genes are involved in growth promotion of Arabidopsis by the plant growth-promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM196. New Phytol 198(2):514–524PubMed CrossRef
    Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12(1):3PubMed PubMedCentral CrossRef
    Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61(6):909–921PubMed CrossRef
    Kummu M, de Moel H, Porkka M, Siebert S, Varis O, Ward PJ (2012) Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci Total Environ 438:477–489PubMed CrossRef
    Lee S, Flores-Encarnación M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186(16):5384–5391PubMed PubMedCentral CrossRef
    Lery LMS, Hemerly AS, Nogueira EM, Krüger MAK, Bisch PM (2011) Quantitative proteomic analysis of the interaction between the endophytic plant-growth-promoting bacterium Gluconacetobacter diazotrophicus and sugarcane. Mol Plant-Microbe Interact 24:562–576PubMed CrossRef
    Li R, MacRae IC (1992) Specific identification and enumeration of Acetobucfer diazotrophicus in sugarcane. Soil Biol Biochem 24:413–419CrossRef
    Li X, Zhang L (2015) Endophytic infection alleviates Pb2+ stress effects on photosystem II functioning of Oryza sativa leaves. J Hazard Mater 295:79–85PubMed CrossRef
    Luna MF, Galar ML, Aprea J, Molinari ML, Boiardi JL (2010) Colonization of sorghum and wheat by seed inoculation with Gluconacetobacter diazotrophicus. Biotechnol Lett 32:1071–1076PubMed CrossRef
    Luna MF, Aprea J, Crespo JM, Boiardi JL (2012) Colonization and yield promotion of tomato by Gluconacetobacter diazotrophicus. Appl Soil Ecol 61:225–229CrossRef
    Maclean AM, Sugio A, Kingdom HN, Grieve VM, Hogenhout SA (2011) Arabidopsis thaliana as a model plant for understanding phytoplasma interactions with plant and insect hosts. Bull Insectol 64(Supplement):S173–S174
    Madhaiyan M, Saravanan VS, Jovi DBSS (2004) Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiol Res 159(3):233–243PubMed CrossRef
    Matiru V, Thomson J (1998) Can Acetobacter diazotrophicus be used as a growth promoter for coffee, tea, and banana plants? In Proc 8th Cong Afric Assoc Biol Nitro Fixat, F. D. Dakora (Eds.) 129–130 University of Cape Town
    Meenakshisundaram M, Santhaguru K (2010) Isolation and nitrogen fixing efficiency of a novel endophytic diazotroph Gluconacetobacter diazotrophicus associated with Saccharum officinarum from southern district of Tamilnadu. Int J Biol Med Res 1:298–300
    Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51(3):326–335PubMed CrossRef
    Meneses CHSG, Rouws LFM, Simões-Araújo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Interact 24:1448–1458PubMed CrossRef
    Mercado-Blanco J, Bakker PA (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389PubMed CrossRef
    Muñoz-Rojas J, Caballero-Mellado J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46(4):454–464PubMed CrossRef
    Muthukumarasamy R, Revathi G, Vadivelu M (2000) Antagonistic potential of N2-fixing Acetobacter diazotrophicus against Colletotrichum falcatum Went., a causal organism of red-rot of sugarcane. Curr Sci 78:1063–1065
    Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Ki-Do P, Son CY, Sa T, Caballero-Mellado J (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28(3):277–286PubMed CrossRef
    Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24(5):533–542PubMed CrossRef
    O’Callaghan KJ, Stone PJ, Hu X, Griffiths DW, Davey MR, Cocking EC (2000) Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571. Appl Environ Microbiol 66:2185–2191PubMed PubMedCentral CrossRef
    Oliveira AD, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242(2):205–215CrossRef
    Ouibrahim L, Caranta C (2013) Exploitation of natural genetic diversity to study plant–virus interactions: what can we learn from Arabidopsis thaliana? Mol Plant Pathol 14(8):844–854PubMed CrossRef
    Palacios OA, Bashan Y, de-Bashan LE (2014) Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview. Biol Fertil Soils 50:415–432CrossRef
    Paula MA, Reis VM, Döbereiner J (1991) Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.), and sweet sorghum (Sorghum vulgare). Biol Fertil Soils 11(2):111–115CrossRef
    Peng S, Biswas JC, Ladha JK, Gyaneshwar P, Chen Y (2002) Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agron J 94(4):925–929CrossRef
    Pieterse CMJ, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12(12):564–569PubMed CrossRef
    Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316PubMed CrossRef
    Pieterse CMJ, Van der Does D, Zamoudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:28.1–28.33CrossRef
    Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:16.1–16.29CrossRef
    Piñón D, Casas M, Blanch M, Fontaniella B, Blanco Y, Vicente C, Solas MT, Legaz ME (2002) Gluconacetobacter diazotrophicus, a sugar cane endosymbiont, produces a bacteriocin against Xanthomonas albilineans, a sugar cane pathogen. Res Microbiol 153:345–351PubMed CrossRef
    Poupin MJ, Timmermann T, Veja A, Zuñiga A, González B (2013) Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 8(7):e69435PubMed PubMedCentral CrossRef
    Reis VM, Olivares FL, Debereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:401–405PubMed CrossRef
    Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28(9):829–836
    Rodrigues Neto J, Malavolta V Jr, Victor O (1986) Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathol 12(1–2):32
    Rouws LF, Meneses CH, Guedes HV, Vidal MS, Baldani JI, Schwab S (2010) Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes. Lett Appl Microbiol 51:325–330PubMed CrossRef
    Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2007) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microb Ecol 55:130–140PubMed CrossRef
    Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Develop 3:77–80
    Serrato RV, Meneses CHSG, Vidal MS, Santana-Filho AP, Iacomini M, Sassaki GL, Baldani JI (2013) Structural studies of an exopolysaccharide produced by Gluconacetobacter diazotrophicus PAL5. Carbohydr Polym 98:1153–1159PubMed CrossRef
    Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth. Mol Plant-Microbe Interact 14:358–366PubMed CrossRef
    Shirano Y, Kachroo P, Shah J, Klessig DF (2002) A gain-of-function mutation in an Arabidopsis Toll interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162PubMed PubMedCentral CrossRef
    Tapia-Hernández A, Bustillos-Cristales MR, Jiménez-Salgado T, Caballero-Mellado J, Fuentes-Ramírez LE (2000) Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants. Microb Ecol 39(1):49–55PubMed CrossRef
    Vargas L, Santa Brígida AB, Mota Filho JP, de Carvalho TG, Rojas CA, Vaneechoutte D, Van Bel M, Farrinelli L, Ferriera PCG, Hemerly AS (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 9(12):e114744PubMed PubMedCentral CrossRef
    Verhage A, Van Wees CMS, Pieterse CMJ (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154:536–540PubMed PubMedCentral CrossRef
    Verhagen BW, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CM (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17(8):895–908PubMed CrossRef
    Vinagre F, Vargas C, Schwarcz K, Cavalcante J, Nogueira EM, Baldani JI, Ferreira PCG, Hemerly AS (2006) SHR5: a novel plant receptor kinase involved in plant–N2-fixing endophytic bacteria association. J Exp Bot 57(3):559–569PubMed CrossRef
    Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant-Microbe Interact 18:385–396PubMed CrossRef
    Windram O, Penfold CA, Denby KJ (2014) Network modeling to understand plant immunity. Annu Rev Phytopathol 52:5.1–5.20CrossRef
    Yang S, Hua J (2004) A haplotype-specific resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16:1060–1071PubMed PubMedCentral CrossRef
    Youssef HH, Fayez M, Monib M, Hegazi N (2004) Gluconacetobacter diazotrophicus: a natural endophytic diazotroph of Nile Delta sugarcane capable of establishing an endophytic association with wheat. Biol Fertil Soils 39(6):391–397CrossRef
    Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150PubMed CrossRef
    Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive. Plant Cell 15:2636–2646PubMed PubMedCentral CrossRef
    Zhou XJ, Liang Y, Chen H, Shen SH, Jing YX (2006) Effects of rhizobia inoculation and nitrogen fertilization on photosynthetic physiology of soybean. Photosynthetica 44:530–535CrossRef
  • 作者单位:A. L. S. Rangel de Souza (1)
    S. A. De Souza (1)
    M. V. V. De Oliveira (1)
    T. M. Ferraz (2)
    F. A. M. M. A. Figueiredo (2)
    N. D. Da Silva (1)
    P. L. Rangel (1)
    C. R. S. Panisset (1)
    F. L. Olivares (3)
    E. Campostrini (2)
    G. A. De Souza Filho (1)

    1. Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
    2. Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
    3. Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Background and aims Gluconacetobacter diazotrophicus is a plant growth-promoting bacteria (PGPB) that colonizes several plant species. Here, we studied the internal colonization of Arabidopsis thaliana tissues by G. diazotrophicus and analyzed its effects on physiology, growth, and activation of plant immune system during such association.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700