Engineering resistance to phage GVE3 in Geobacillus thermoglucosidasius
详细信息    查看全文
  • 作者:Leonardo Joaquim van Zyl ; Mark Paul Taylor…
  • 关键词:Bacteriophage ; Geobacillus ; Resistance ; Polysaccharide pyruvyl transferase ; Immunity
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:100
  • 期:4
  • 页码:1833-1841
  • 全文大小:880 KB
  • 参考文献:Baptista C, Barreto HC, São-José C (2013) High levels of Deg U-P activate an Esat-6-like secretion system in Bacillus subtilis. PLOS One. doi:10.​1371/​journal.​pone.​0067840
    Bartosiak-Jentys J, Eley K, Leak DJ (2012) Application of pheB as a reporter gene for Geobacillus spp., enabling qualitative colony screening and quantitative analysis of promoter strength. Appl Environ Microbiol 78:5945–5947PubMedCentral CrossRef PubMed
    Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297CrossRef PubMed
    Bishop-Lilly KA, Plaut RD, Chen PE, Akmal A, Willner KM, Butani A, Dorsey S, Mokashi V, Mateczun AJ, Chapman C, George M, Luu T, Read TD, Calendar R, Stibitz S, Sozhamannan S (2012) Whole genome sequencing of phage-resistant Bacillus anthracis mutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption. Virol J 9:246PubMedCentral CrossRef PubMed
    Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284CrossRef PubMed
    Brűssow H (2001) Phages of dairy bacteria. Annu Rev Microbiol 55:283–303CrossRef PubMed
    Chang C, Nam K, Young R (1995) S gene expression and the timing of lysis by bacteriophage λ. J Bacteriol 177:3283–3294PubMedCentral PubMed
    Chaturongakul S, Ounjai P (2014) Phage–host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Front Microbiol 5:442PubMedCentral CrossRef PubMed
    Clément JM, Lepouce E, Marchal C, Hofnung M (1983) Genetic study of a membrane protein: DNA sequence alterations due to 17 lamB point mutations affecting adsorption of phage lambda. EMBO J 2:77–80PubMedCentral PubMed
    Coffey A, Ross RP (2002) Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. Antonie Van Leeuwenhoek 82:303–321CrossRef PubMed
    Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408CrossRef PubMed
    Davison S, Couture-Tosi E, Candela T, Mock M, Fouet A (2005) Identification of the Bacillus anthracis ϒ phage receptor. J Bacteriol 187:6742–6749PubMedCentral CrossRef PubMed
    Dupont K, Janzen T, Vogensen FK, Josephsen J, Stuer-Lauridsen B (2004) Identification of Lactococcus lactis genes required for bacteriophage adsorption. Appl Environ Microbiol 70:5825–5832PubMedCentral CrossRef PubMed
    Durmaz E, Klaenhammer TR (2007) Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis. J Bacteriol 189:1417–1425PubMedCentral CrossRef PubMed
    Fogg PCM, Rigden DJ, Saunders JR, McCarthy AJ, Allison HE (2010) Characterization of the relationship between integrase, excisionase and antirepressor activities associated with a super infecting Shiga toxin encoding bacteriophage. Nuc Acids Res 39:2116–2129CrossRef
    Iyer LM, Koonin EV, Aravind L (2002) Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origin of fungal APSES transcription factors. Gen Biol 3:research0012.1–0012.11
    Jakutytė L, Baptista B, São-José C, Daugelavičius R, Carballido-López R, Tavares P (2011) Bacteriophage infection in rod-shaped Gram-positive bacteria: evidence for a preferential polar route for phage SPP1 entry in Bacillus subtilis. J Bacteriol 193:4893–4903PubMedCentral CrossRef PubMed
    Jones DT, Shirley M, Wu X, Keis S (2000) Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J Mol Microbiol Biotechnol 2:21–26PubMed
    Kotze AA, Tuffin IM, Deane SM, Rawlings DE (2006) Cloning and characterization of the chromosomal arsenic resistance genes from Acidithiobacillus caldus and enhanced arsenic resistance on conjugal transfer of ars genes located on transposon TnAtcArs. Microbiology 152:3551–3560CrossRef PubMed
    Lin PP, Rabe KS, Takasumi JL, Kadisch M, Arnold FH, Liao JC (2014) Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab Eng 24:1–8CrossRef PubMed
    Mahony J, Murphy J, van Sinderen D (2012) Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention. Front Microbiol 3:335PubMedCentral CrossRef PubMed
    Marco MB, Moineau S, Quiberoni A (2012) Bacteriophages and dairy fermentations. Bacteriophage 2:149–158PubMedCentral CrossRef PubMed
    Mardanov AV, Ravin NV (2007) The antirepressor needed for induction of linear plasmid-prophage N15 belongs to the SOS regulon. J Bacteriol 189:6333–6338PubMedCentral CrossRef PubMed
    McGrath S, Fitzgerald GF, van Sinderen D (2002) Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol Microbiol 43:509–520CrossRef PubMed
    McLaughlin JR, Wong HC, Ting YE, Van Arsdell JN, Chang S (1986) Control of lysogeny and immunity of Bacillus subtilis temperate bacteriophage SPβ by its d gene. J Bacteriol 167:952–959PubMedCentral PubMed
    Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19:4473–4484PubMedCentral CrossRef PubMed
    Moineau S (1999) Applications of phage resistance in lactic acid bacteria. Antonie Van Leeuwenhoek 76:377–382CrossRef PubMed
    Nijkamp HJJ, Szybalski W, Calef E (1971) Antirepressor controls the transcription of the repressor operon of lambda prophage (L. G. H. Ledoux, Ed.), Informative molecules in biological systems, p. 241–248. Amsterdam: North-Holland Publishing Co
    Örmälä A-M, Jalasvuori M (2013) Phage therapy: should bacterial resistance to phages be a concern, even in the long run? Bacteriophage 3(1):e24219PubMedCentral CrossRef PubMed
    Raab R, Neal G, Sohaskey C, Smith J, Young R (1988) Dominance in lambda S mutations and evidence for translational control. J Mol Biol 199:95–105CrossRef PubMed
    Reichardt LF (1975) Control of bacteriophage lambda repressor synthesis: regulation of the maintenance pathway by the cro and cl products. J Molec Biol 93:289–305CrossRef PubMed
    Samson JE, Magadán AH, Sabri M, Moineau S (2013) Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol 11:675–687CrossRef PubMed
    São-José C, Baptista C, Santos MA (2004) Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J Bacteriol 186:8337–8346PubMedCentral CrossRef PubMed
    Shearwin KE, Brumby AM, Egan JB (1998) The Tum protein of coliphage 186 is an antirepressor. J Bacteriol 273:5708–5717
    Su F, Xua P (2014) Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals. Sci Rep 4:3926PubMedCentral PubMed
    Taylor MP, Esteban CD, Leak DJ (2008) Development of a versatile shuttle vector for gene expression in Geobacillus spp. Plasmid 60:45–52CrossRef PubMed
    Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27:398–405CrossRef PubMed
    Van Zyl LJ, Taylor MP, Eley K, Tuffin M, Cowan DA (2014) Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius. Appl Microbiol Biotechnol 98:1247–1259CrossRef PubMed
    Van Zyl LJ, Sunda F, Taylor MP, Cowan DA, Trindade MI (2015) Identification and characterization of a novel Geobacillus thermoglucosidasius bacteriophage, GVE3. Arch. Virol: 2269-2282
  • 作者单位:Leonardo Joaquim van Zyl (1)
    Mark Paul Taylor (2)
    Marla Trindade (1)

    1. Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town, South Africa
    2. TMO Renewables Limited, 40 Alan Turing Road, The Surrey Research Park, Guildford, Surrey, GU2 7YF, UK
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Geobacillus thermoglucosidasius is a promising platform organism for the production of biofuels and other metabolites of interest. G. thermoglucosidasius fermentations could be subject to bacteriophage-related failure and financial loss. We develop two strains resistant to a recently described G. thermoglucosidasius-infecting phage GVE3. The phage-encoded immunity gene, imm, was overexpressed in the host leading to phage resistance. A phage-resistant mutant was isolated following expression of a putative anti-repressor-like protein and phage challenge. A point mutation was identified in the polysaccharide pyruvyl transferase, csaB. A double crossover knockout mutation of csaB confirmed its role in the phage resistance phenotype. These resistance mechanisms appear to prevent phage DNA injection and/or lysogenic conversion rather than just reducing efficiency of plating, as no phage DNA could be detected in resistant bacteria challenged with GVE3 and no plaques observed even at high phage titers. Not only do the strains developed here shed light on the biological relationship between the GVE3 phage and its host, they could be employed by those looking to make use of this organism for metabolite production, with reduced occurrence of GVE3-related failure. Keywords Bacteriophage Geobacillus Resistance Polysaccharide pyruvyl transferase Immunity

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700