Untangling the wine metabolome by combining untargeted SPME–GCxGC-TOF-MS and sensory analysis to profile Sauvignon blanc co-fermented with seven different yeasts
详细信息    查看全文
  • 作者:Margaret E. Beckner Whitener ; Jan Stanstrup ; Valeria Panzeri ; Silvia Carlin…
  • 关键词:Non ; Saccharomyces ; SPME–GCxGC ; TOF ; MS ; Sensory ; Sauvignon blanc
  • 刊名:Metabolomics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:12
  • 期:3
  • 全文大小:917 KB
  • 参考文献:Andorrà, I., Berradre, M., Rozès, N., Mas, A., Guillamón, J. M., & Esteve-Zarzoso, B. (2010). Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations. European Food Research and Technology, 231(2), 215–224. doi:10.​1007/​s00217-010-1272-0 .CrossRef
    Andorrà, I., Berradre, M., Mas, A., Esteve-Zarzoso, B., & Guillamón, J. M. (2012). Effect of mixed culture fermentations on yeast populations and aroma profile. LWT Food Science and Technology, 49(1), 8–13. doi:10.​1016/​j.​lwt.​2012.​04.​008 .CrossRef
    Anfang, N., Brajkovich, M., & Goddard, M. R. (2009). Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon blanc. Australian Journal of Grape and Wine Research, 15(1), 1–8. doi:10.​1111/​j.​1755-0238.​2008.​00031.​x .CrossRef
    Azzolini, M., Fedrizzi, B., Tosi, E., et al. (2012). Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine. European Food Research and Technology, 235(2), 303–313. doi:10.​1007/​s00217-012-1762-3 .CrossRef
    Beckner Whitener, M. E., Carlin, S., Jacobson, D., et al. (2015). Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: A targeted approach. LWT Food Science and Technology, 64(1), 412–422. doi:10.​1016/​j.​lwt.​2015.​05.​018 .CrossRef
    Benito, Á., Calderón, F., Palomero, F., & Benito, S. (2015). Combine use of selected Schizosaccharomyces pombe and Lachancea thermotolerans yeast strains as an alternative to the traditional malolactic fermentation in red wine production. Molecules, 20(6), 9510–9523. doi:10.​3390/​molecules2006951​0 .CrossRef PubMed
    Carrau, F. M., Medina, K., Boido, E., et al. (2005). De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters, 243(1), 107–115. doi:10.​1016/​j.​femsle.​2004.​11.​050 .CrossRef PubMed
    Charoenchai, C., Fleet, G. H., Henschke, P. A., & Todd, B. E. N. (1997). Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Australian Journal of Grape and Wine Research, 3(1984), 2–8.CrossRef
    Ciani, M., & Comitini, F. (2010a). Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Research,. doi:10.​1111/​j.​1567-1364.​2009.​00579.​x .PubMed
    Ciani, M., & Comitini, F. (2010b). Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Annals of Microbiology, 61(1), 25–32. doi:10.​1007/​s13213-010-0069-5 .CrossRef
    Ciani, M., & Maccarelli, F. (1998). Oenological properties of non-Saccharomyces yeasts associated with wine-making. World Journal of Microbiology and Biotechnology, 14, 199–203.CrossRef
    Ciani, M., Beco, L., & Comitini, F. (2006). Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. International Journal of Food Microbiology, 108(2), 239–245. doi:10.​1016/​j.​ijfoodmicro.​2005.​11.​012 .CrossRef PubMed
    Clemente-Jimenez, J. M., Mingorance-Cazorla, L., Martínez-Rodríguez, S., Las Heras-Vázquez, F. J., & Rodríguez-Vico, F. (2004). Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiology, 21(2), 149–155. doi:10.​1016/​S0740-0020(03)00063-7 .CrossRef
    Clemente-Jimenez, J. M., Mingorance-Cazorla, L., Martínez-Rodríguez, S., Las Heras-Vázquez, F. J., & Rodríguez-Vico, F. (2005). Influence of sequential yeast mixtures on wine fermentation. International Journal of Food Microbiology, 98(3), 301–308. doi:10.​1016/​j.​ijfoodmicro.​2004.​06.​007 .CrossRef PubMed
    Comitini, F., Gobbi, M., Domizio, P., et al. (2011). Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiology, 28(5), 873–882. doi:10.​1016/​j.​fm.​2010.​12.​001 .CrossRef PubMed
    Cordero-Bueso, G., Esteve-Zarzoso, B., Cabellos, J. M., Gil-Díaz, M., & Arroyo, T. (2012). Biotechnological potential of non-Saccharomyces yeasts isolated during spontaneous fermentations of Malvar (Vitis vinifera cv. L.). European Food Research and Technology, 236(1), 193–207. doi:10.​1007/​s00217-012-1874-9 .CrossRef
    Dashko, S., Zhou, N., Tinta, T., et al. (2015). Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla. Journal of Industrial Microbiology and Biotechnology, 42(7), 997–1010. doi:10.​1007/​s10295-015-1620-y .CrossRef PubMed
    Dias, L., Dias, S., Sancho, T., et al. (2003). Identification of yeasts isolated from wine-related environments and capable of producing 4-ethylphenol. Food Microbiology, 20(5), 567–574. doi:10.​1016/​S0740-0020(02)00152-1 .CrossRef
    Domizio, P., Romani, C., Lencioni, L., et al. (2011). Outlining a future for non-Saccharomyces yeasts: Selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. International Journal of Food Microbiology, 147(3), 170–180. doi:10.​1016/​j.​ijfoodmicro.​2011.​03.​020 .CrossRef PubMed
    Dubourdieu, D., Tominaga, T., Masneuf, I., Peyrot des Gachons, C., & Murat, M. L. (2006). The role of yeasts in grape flavor development during fermentation: The example of Sauvignon blanc. American Journal of Enology and Viticulture, 57(1), 81–88.
    Englezos, V., Rantsiou, K., Torchio, F., Rolle, L., Gerbi, V., & Cocolin, L. (2015). Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations. International Journal of Food Microbiology, 199, 33–40. doi:10.​1016/​j.​ijfoodmicro.​2015.​01.​009 .CrossRef PubMed
    Esteve-Zarzoso, B., Manzanares, P., Ramón, D., & Querol, A. (1998). The role of non-Saccharomyces yeasts in industrial winemaking. International Microbiology, 1(2), 143–148.PubMed
    Fernández, M., Úbeda, J. F., & Briones, A. I. (2000). Typing of non-Saccharomyces yeasts with enzymatic activities of interest in wine-making. International Journal of Food Microbiology, 59(1–2), 29–36. doi:10.​1016/​S0168-1605(00)00283-X .CrossRef PubMed
    Fleet, G. H. (1993). Wine microbiology and biotechnology. In: G. H. Fleet, Ed. (1st ed.). Boca Raton: CRC Press.
    Fleet, G. (2003). Yeast interactions and wine flavour. International Journal of Food Microbiology, 86(1–2), 11–22. doi:10.​1016/​S0168-1605(03)00245-9 .CrossRef PubMed
    Gobbi, M., Comitini, F., Domizio, P., et al. (2013). Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Food Microbiology, 33(2), 271–281. doi:10.​1016/​j.​fm.​2012.​10.​004 .CrossRef PubMed
    Hutkins, R. W. (2006). Microbiology and technology of fermented foods (1st ed.). Ames, Iowa: Blackwell Publishing Ltd.CrossRef
    Johnson, E. A., & Echavarri-Erasun, C. (2011). Yeast biotechnology. In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The yeasts (Fifth ed., pp. 21–44). Elsevier, London. doi:10.​1016/​B978-0-444-52149-1.​00003-3
    Jolly, N. P., Augustyn, O. P. H., & Pretorius, I. S. (2006). The role and use of non-Saccharomyces yeasts in wine production. South African Journal of Enology and Viticulture, 27(1), 15–39.
    Jolly, N. P., Varela, C., & Pretorius, I. S. (2014). Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Research, 14, 215–237. doi:10.​1111/​1567-1364.​12111 .CrossRef PubMed
    Kapsopoulou, K., Mourtzini, A., Anthoulas, M., & Nerantzis, E. (2006). Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 23(5), 735–739. doi:10.​1007/​s11274-006-9283-5 .CrossRef
    Kurtzman, C. (2003). Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Research, 4(3), 233–245. doi:10.​1016/​S1567-1356(03)00175-2 .CrossRef PubMed
    Lambrechts, M. G., & Pretorius, I. S. (2000). Yeast and its importance to wine aroma—a review. South African Journal of Enology and Viticulture, 21(June), 97–129.
    Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food. In D. Heldman, D. Golden, R. Hartel, H. Haymann, J. Hotchkiss, M. Johnson, et al. (Eds.), Sensory evaluation of food—principles and practices (Second., pp. 433–449). London. doi:10.​1007/​978-1-4419-6488-5
    Maio, S. D., Genna, G., Gandolfo, V., et al. (2012). Presence of Candida zemplinina in Sicilian musts and selection of a strain for wine mixed fermentations. South African Journal of Enology and Viticulture, 33(1), 80–87.
    Majdak, A., & Herjavec, S. (2002). Comparison of wine aroma compounds produced by Saccharomyces paradoxus and Saccharomyces cerevisiae strains. Food Technology and Biotechnology, 40(2), 103–109.
    Moreira, N., Mendes, F., Pereira, O., Guedes de Pinho, P., Hogg, T., & Vasconcelos, I. (2002). Volatile sulphur compounds in wines related to yeast metabolism and nitrogen composition of grape musts. Analytica Chimica Acta, 458(1), 157–167. doi:10.​1016/​S0003-2670(01)01618-X .CrossRef
    Murtagh, F., & Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion? Journal of Classification, 31(3), 274–295. doi:10.​1007/​s00357-014-9161-z .CrossRef
    Nieuwoudt, H. H., Pretorius, I. S., Bauer, F. F., Nel, D. G., & Prior, B. A. (2006). Rapid screening of the fermentation profiles of wine yeasts by Fourier transform infrared spectroscopy. Journal of Microbiological Methods, 67(2), 248–256. doi:10.​1016/​j.​mimet.​2006.​03.​019 .CrossRef PubMed
    Pina, C., Santos, C., Couto, J. A., & Hogg, T. (2004). Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae—influence of different culture conditions. Food Microbiology, 21(4), 439–447. doi:10.​1016/​j.​fm.​2003.​10.​009 .CrossRef
    Rantsiou, K., Dolci, P., Giacosa, S., et al. (2012). Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Applied and Environmental Microbiology, 78(6), 1987–1994. doi:10.​1128/​AEM.​06768-11 .PubMedCentral CrossRef PubMed
    Renault, P., Miot-Sertier, C., Marullo, P., et al. (2009). Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: Potential applications in the wine industry. International Journal of Food Microbiology, 134(3), 201–210.CrossRef PubMed
    Rojas, V., Gil, J. V., Piaga, F., & Manzanares, P. (2001). Studies on acetate ester production by non-Saccharomyces wine yeasts. International Journal of Food Microbiology, 70(3), 283–289. doi:10.​1016/​S0168-1605(01)00552-9 .CrossRef PubMed
    Romano, P., Fiore, C., Paraggio, M., Caruso, M., & Capece, A. (2003a). Function of yeast species and strains in wine flavour. International Journal of Food Microbiology, 86(1–2), 169–180. doi:10.​1016/​S0168-1605(03)00290-3 .CrossRef PubMed
    Romano, P., Granchi, L., Caruso, M., et al. (2003b). The species-specific ratios of 2,3-butanediol and acetoin isomers as a tool to evaluate wine yeast performance. International Journal of Food Microbiology, 86(1–2), 163–168. doi:10.​1016/​S0168-1605(03)00254-X .CrossRef PubMed
    Saayman, M., & Viljoen-Bloom, M. (2006). The biochemistry of malic acid metabolism by wine yeasts—a review. South African Journal of Enology and Viticulture, 27(2), 113–126.
    Sadoudi, M., Tourdot-Maréchal, R., Rousseaux, S., et al. (2012). Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiology, 32(2), 243–253. doi:10.​1016/​j.​fm.​2012.​06.​006 .CrossRef PubMed
    Salmon, J. M. (1987). L-malic acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) Biomembranes, 901(1), 30–34. doi:10.​1016/​0005-2736(87)90253-7 .CrossRef
    Strimmer, K. (2008a). fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics, 24(12), 1461–1462. doi:10.​1093/​bioinformatics/​btn209 .CrossRef PubMed
    Strimmer, K. (2008b). A unified approach to false discovery rate estimation. BMC Bioinformatics, 9(1), 303. doi:10.​1186/​1471-2105-9-303 .PubMedCentral CrossRef PubMed
    Sumner, L. W., Samuel, T., Noble, R., Gmbh, S. D., Barrett, D., Beale, M. H., & Hardy, N. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3(3), 211–221. doi:10.​1007/​s11306-007-0082-2 .PubMedCentral CrossRef PubMed
    Sun, S. Y., Gong, H. S., Jiang, X. M., & Zhao, Y. P. (2014). Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines. Food Microbiology, 44C, 15–23. doi:10.​1016/​j.​fm.​2014.​05.​007 .CrossRef
    Tomic, O., Luciano, G., Nilsen, A., Hyldig, G., Lorensen, K., & Næs, T. (2009). Analysing sensory panel performance in a proficiency test using the PanelCheck software. European Food Research and Technology, 230(3), 497–511. doi:10.​1007/​s00217-009-1185-y .CrossRef
    Tominaga, T., Furrer, A., Henry, R., & Dubourdieu, D. (1998). Identification of new volatile thiols in the aroma of Vitis vinifera L. var. Sauvignon blanc wines. Flavour and Fragrance Journal, 13(3), 159–162. doi:10.​1002/​(SICI)1099-1026(199805/​06)13:​3<159:​AID-FFJ709>3.​0.​CO;2-7 .CrossRef
    Van Breda, V., Jolly, N., & van Wyk, J. (2013). Characterisation of commercial and natural Torulaspora delbrueckii wine yeast strains. International Journal of Food Microbiology, 163(2–3), 80–88. doi:10.​1016/​j.​ijfoodmicro.​2013.​02.​011 .CrossRef PubMed
    Viana, F., Gil, J. V., Genove, S., Valle, S., & Manzanares, P. (2008). Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiology, 25, 778–785. doi:10.​1016/​j.​fm.​2008.​04.​015 .CrossRef PubMed
    Villena, M., Iranzo, J., & Pérez, A. (2007). β-Glucosidase activity in wine yeasts: Application in enology. Enzyme and Microbial Technology, 40(3), 420–425. doi:10.​1016/​j.​enzmictec.​2006.​07.​013 .CrossRef
    Wang, C., Mas, A., & Esteve-Zarzoso, B. (2015). Interaction between Hanseniaspora uvarum and Saccharomyces cerevisiae during alcoholic fermentation. International Journal of Food Microbiology, 206, 67–74. doi:10.​1016/​j.​ijfoodmicro.​2015.​04.​022 .CrossRef PubMed
    Zalacain, A., Marín, J., Alonso, G. L., & Salinas, M. R. (2007). Analysis of wine primary aroma compounds by stir bar sorptive extraction. Talanta, 71(4), 1610–1615. doi:10.​1016/​j.​talanta.​2006.​07.​051 .CrossRef PubMed
    Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Modern analytical techniques in metabolomics analysis. The Analyst, 137(2), 293. doi:10.​1039/​c1an15605e .CrossRef PubMed
    Zott, K., Miot-Sertier, C., Claisse, O., Lonvaud-Funel, A., & Masneuf-Pomarede, I. (2008). Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. International Journal of Food Microbiology, 125(2), 197–203. doi:10.​1016/​j.​ijfoodmicro.​2008.​04.​001 .CrossRef PubMed
    Zott, K., Thibon, C., Bely, M., Lonvaud-Funel, A., Dubourdieu, D., & Masneuf-Pomarede, I. (2011). The grape must non-Saccharomyces microbial community: impact on volatile thiol release. International Journal of Food Microbiology, 151(2), 210–215. doi:10.​1016/​j.​ijfoodmicro.​2011.​08.​026 .CrossRef PubMed
  • 作者单位:Margaret E. Beckner Whitener (1) (2)
    Jan Stanstrup (1)
    Valeria Panzeri (3)
    Silvia Carlin (1)
    Benoit Divol (2)
    Maret Du Toit (2)
    Urska Vrhovsek (1)

    1. Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all’Adige, TN, Italy
    2. Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
    3. Institute for Grape and Wine Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
  • 刊物主题:Biochemistry, general; Molecular Medicine; Cell Biology; Developmental Biology; Biomedicine general;
  • 出版者:Springer US
  • ISSN:1573-3890
文摘
Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation, however for aroma and flavor formation in wine, non-Saccharomyces species can have a powerful effect. This study aimed to compare untargeted volatile compound profiles from SPME–GCxGC-TOF-MS and sensory analysis data of Sauvignon blanc wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) where commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each wine showed a distinct profile both sensorially and chemically. SC and CZ wines were the most distinct in both of these cases. SC wine had guava, grapefruit, banana, and pineapple aromas while CZ wine was driven by fermented apple, dried peach/apricot, and stewed fruit as well as sour flavor. Chemically over 300 unique features were identified as significantly different across the fermentations. SC wine had the highest number of esters in the highest relative concentration but all the yeasts had distinct ester profiles. CZ wine displayed the highest number of terpenes in high concentration but also produced a large amount of acetic acid. KA wine was high in ethyl acetate. TD wine had fewer esters but three distinctly higher thiol compounds. LT wine showed a relatively high number of increased acetate esters and certain terpenes. PK wine had some off odor compounds while the MP wine had high levels of methyl butyl-, methyl propyl-, and phenethyl esters. Overall, this study gives a more detailed profile of these yeasts contribution to Sauvignon blanc wine than previously reported. Keywords Non-Saccharomyces SPME–GCxGC-TOF-MS Sensory Sauvignon blanc

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700