A novel thermostable and organic solvent-tolerant lipase from Xanthomonas oryzae pv. oryzae YB103: screening, purification and characterization
详细信息    查看全文
  • 作者:Qiurun Mo ; Aili Liu ; Hailun Guo ; Yan Zhang ; Mu Li
  • 关键词:Biotechnology ; Enzyme stability ; Enzyme application ; Enzyme structure ; Function ; Synthesis in organic solvents ; Protein stability
  • 刊名:Extremophiles
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:20
  • 期:2
  • 页码:157-165
  • 全文大小:612 KB
  • 参考文献:Abdel-Fattah Y (2002) Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design. Biotechnol Lett 24:1217–1222CrossRef
    Abdelkafi S, Fouquet B, Barouh N, Durner S, Pina M, Scheirlinckx F, Villeneuve P, Carrière F (2009) In vitro comparisons between Carica papaya and pancreatic lipases during test meal lipolysis: potential use of CPL in enzyme replacement therapy. Food Chem 115:488–494CrossRef
    Ahmed EH, Raghavendra T, Madamwar D (2010) An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresour Technol 101:3628–3634CrossRef PubMed
    Aparna G, Chatterjee A, Jha G, Sonti RV, Sankaranarayanan R (2007) Crystallization and preliminary crystallographic studies of LipA, a secretory lipase/esterase from Xanthomonas oryzae pv. oryzae. Acta Crystallogr, Sect F Struct Biol Cryst Commun 63:708–710CrossRef
    Arpigny J, Jaeger K (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183PubMedCentral CrossRef PubMed
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRef PubMed
    Cai J, Xie Y, Song B, Wang Y, Zhang Z, Feng Y (2011) Fervidobacterium changbaicum Lip1: identification, cloning, and characterization of the thermophilic lipase as a new member of bacterial lipase family V. Appl Microbiol Biot 89:1463–1473CrossRef
    Cardenas F, de Castro MS, Sanchez-Montero JM, Sinisterra JV, Valmaseda M, Elson SW, Alvarez E (2001) Novel microbial lipases: catalytic activity in reactions in organic media. Enzyme Microb Technol 28:145–154CrossRef PubMed
    Carrasco-López C, Godoy C, de las Rivas B, Fernández-Lorente G, Palomo JM, Guisán JM, Fernández-Lafuente R, Martínez-Ripoll R, Hermoso JA (2009) Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. J Biol Chem 284:4365–4372CrossRef PubMed
    Chen CS, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104:7294–7299CrossRef
    Colombo G, Carrea G (2002) Modeling enzyme reactivity in organic solvents and water through computer simulations. J Biotechnol 96:23–33CrossRef PubMed
    Dandavate V, Jinjala J, Keharia H, Madamwar D (2009) Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour Technol 100:3374–3381CrossRef PubMed
    Dheeman DS, Henehan G, Frías JM (2011) Purification and properties of Amycolatopsis mediterranei DSM 43304 lipase and its potential in flavour ester synthesis. Bioresour Technol 102:3373–3379CrossRef PubMed
    Dong-Woo L, You-Seok K, Jun KK, Byung-Chan K, HakJong C, Doo-sik K, Maggy T, Yu-ryang P (1999) Isolation and characterisation of thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179:393–400CrossRef
    Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282CrossRef
    Ebrahimpour A, Rahman RNZRA, Basri M, Salleh AB (2011) High level expression and characterization of a novel thermostable, organic solvent tolerant, 1, 3-regioselective lipase from Geobacillus sp. strain ARM. Bioresour Technol 102:6972–6981CrossRef PubMed
    Faoro H, Glogauer A, Couto GH (2012) Characterization of a new Acidobacteria-derived moderately thermostable lipase from a Brazilian Atlantic Forest soil metagenome. FEMS Microbiol Ecol 81:386–394CrossRef PubMed
    Franken B, Eggert T, Jaeger KE, Pohl M (2011) Mechanism of acetaldehyde-induced deactivation of microbial lipases. BMC Biochem 12:10–22PubMedCentral CrossRef PubMed
    Glogauer A, Martini VP, Faoro H, Couto GH, Müller-Santos M, Monteiro RA, Mitchell DA, de Souza EM, Pedrosa FO, Krieger N (2011) Identification and characterization of a new true lipase isolated through metagenomic approach. Microb Cell Fact 10:54PubMedCentral CrossRef PubMed
    Gotor-Fernández V, Busto E, Gotor V (2006) Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv Synth Catal 348:797–812CrossRef
    Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34CrossRef PubMed
    Hama S, Yamaji H, Fukumizu T, Numata T, Tamalampudi S, Kondo A, Noda H, Fukuda H (2007) Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 34:273–278CrossRef
    Hess M, Katzer M, Antranikian G (2008) Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 12:351–364CrossRef PubMed
    Hold GL, Pryde SE, Russell VJ, Furrie E, Flint HJ (2002) Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39:33–39CrossRef PubMed
    Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin. Biotech 13:390–397
    Khusainov R, van Heel AJ, Lubelski J, Moll GN, Kuipers OP (2015) Identification of essential amino acid residues in the nisin dehydratase NisB. Frontiers Microbiol 6:1–8CrossRef
    Kirwan JP, Hodges RS (2014) Transmission of stability information through the N-domain of tropomyosin is interrupted by a stabilizing mutation (A109L) in the hydrophobic core of the stability control region (residues 97–118). J Biol Chem 289:4356–4366PubMedCentral CrossRef PubMed
    Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246CrossRef PubMed
    Lee MY, Dordick JS (2002) Enzyme activation for nonaqueous media. Curr Opin Biotechnol 13:376–384CrossRef PubMed
    Lee JK, Kim MJ (2011) Ionic liquid co-lyophilized enzyme for biocatalysis in organic solvent: remarkably enhanced activity and enantioselectivity. J Mol Catal B Enzym 68:275–278CrossRef
    Leow TC, Rahman RNZRA, Basri M, Salleh AB (2007) A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles 11:527–535CrossRef PubMed
    Li M, Yang LR, Xu G, Wu JP (2013) Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresour Technol 148:114–120CrossRef PubMed
    Lima VMG, Krieger N, Mitchell DA, Baratti JC, de Filippis I, Fontana JD (2004) Evaluation of the potential for use in biocatalysis of a lipase from a wild strain of Bacillus megaterium. J Mol Catal B Enzym 31:53–61CrossRef
    Mahadevan GD, Neelagund SE (2014) Thermostable lipase from Geobacillus sp. Iso5: bioseparation, characterization and native structural studies. J Basic Microb 54:386–396CrossRef
    Masomian M, Rahman RNZRA, Salleh AB, Basri M (2013) A new thermostable and organic solvent-tolerant lipase from Aneurinibacillus thermoaerophilus strain HZ. Process Biochem 48:169–175CrossRef
    Nardini M, Lang DA, Liebeton K, Jaeger KE, Dijkstra BW (2000) Crystal structure of Pseudomonas aeruginosa lipase in the open conformation THE prototype for family I. 1 of bacterial lipases. J Biol Chem 275:31219–31225CrossRef PubMed
    Ogino H, Mimitsuka T, Muto T, Matsumura M, Yasuda M, Ishimi K, Ishikawa H (2004) Cloning, expression, and characterization of a lipolytic enzyme gene (lip8) from Pseudomonas aeruginosa LST-3. J Mol Microbiol Biotechnol 7:212–223CrossRef PubMed
    Reed CJ, Bushnell S, Evilia C (2014) Circular dichroism and fluorescence spectroscopy of cysteinyl-tRNA synthetase from Halobacterium salinarum ssp. NRC-1 demonstrates that group I cations are particularly effective in providing structure and stability to this halophilic protein. PLoS One 9(3):e89452. doi:10.​1371/​journal.​pone.​0089452 PubMedCentral CrossRef PubMed
    Reyes-Duarte D, Polaina J, López-Cortés N, Alcalde M, Plou FJ, Elborough K, Ballesteros A, Timmis KN, Golyshin PN, Ferrer M (2005) Conversion of a carboxylesterase into a triacylglycerol lipase by a random mutation. Angew Chem Int Edit 117:7725–7729CrossRef
    Royter M, Schmidt M, Elend C, Höbenreich H, Schäfer T, Bornscheuer UT, Antranikian G (2009) Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. Extremophiles 13:769–783PubMedCentral CrossRef PubMed
    Sarkar P, Yamasaki S, Basak S, Bera A, Bag PK (2012) Purification and characterization of a new alkali-thermostable lipase from Staphylococcus aureus isolated from Arachis hypogaea rhizosphere. Process Biochem 47:858–866CrossRef
    Tran DT, Yeh KL, Chen CL, Chang JS (2012) Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour Technol 108:119–127CrossRef PubMed
    Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:11–43CrossRef
    Zhao LL, Xu JH, Zhao J, Pan J, Wang ZL (2008) Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Serratia marcescens ECU1010. Process Biochem 43:626–633CrossRef
  • 作者单位:Qiurun Mo (3)
    Aili Liu (3)
    Hailun Guo (3)
    Yan Zhang (3)
    Mu Li (1) (2) (3)

    3. College of Food Science and Technology, Huazhong Agricultural University, 430070, Wuhan, People’s Republic of China
    1. Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, 430070, Wuhan, Hubei, People’s Republic of China
    2. National Key Laboratory of Agro-Microbiology, Huazhong Agricultural University, 430070, Wuhan, Hubei, People’s Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Biotechnology
    Ecology
  • 出版者:Springer Japan
  • ISSN:1433-4909
文摘
Thermostable lipases offer major biotechnological advantages over mesophilic lipases. In this study, an intracellular thermostable and organic solvent-tolerant lipase-producing strain YB103 was isolated from soil samples and identified taxonomically as Xanthomonas oryzae pv. oryzae. The lipase from X. oryzae pv. oryzae YB103 (LipXO) was purified 101.1-fold to homogeneity with a specific activity of 373.9 U/mg. The purified lipase showed excellent thermostability, exhibiting 51.1 % of its residual activity after incubation for 3 days at 70 °C. The enzyme showed optimal activity at 70 °C, suggesting it is a thermostable lipase. LipXO retained 75.1–154.1 % of its original activity after incubation in 20 % (v/v) hydrophobic organic solvents at 70 °C for 24 h. Furthermore, LipXO displayed excellent stereoselectivity (e.e.p >99 %) toward (S)-1-phenethyl alcohol in n-hexane. These unique properties of LipXO make it promising as a biocatalyst for industrial processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700