Characterization of the protease domain of Rice tungro bacilliform virus responsible for the processing of the capsid protein from the polyprotein
详细信息    查看全文
  • 作者:Philippe Marmey (1)
    Ana Rojas-Mendoza (2)
    Alexandre de Kochko (1)
    Roger N Beachy (3)
    Claude M Fauquet (3)
  • 刊名:Virology Journal
  • 出版年:2005
  • 出版时间:December 2005
  • 年:2005
  • 卷:2
  • 期:1
  • 全文大小:1589KB
  • 参考文献:1. Hull R, Geering A, Harper G, Lockhart BE, Schoelz JE: Caulimoviridae. / Virus Taxonomy, VIIIth Report of the ICTV / (Edited by: Fauquet C.M. MMAMJDUBLA). London , Elsevier/Academic Press 2005, 385鈥?96.
    2. Takatsuji H, Hirochika H, Fukushi T, Ikeda J: Expression of cauliflower mosaic virus reverse transcriptase in yeast. / Nature 1986, 319:240鈥?43. CrossRef
    3. Laco GS, Beachy RN: Rice tungro bacilliform virus encodes reverse transcriptase, DNA polymerase and ribonuclease H activities. / Proceedings of the National Academy of Sciences of the USA 1994, 91:2654鈥?658. CrossRef
    4. Rothnie HM, Chapdelaine Y, Hohn T: Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. / Adv Virus Res 1994, 44:1鈥?7. CrossRef
    5. Hohn T, F眉tterer J: The proteins and functions of plant pararetroviruses : knowns and unknowns. / Critical Review in Plant Sciences 1997,16(1):133鈥?61.
    6. Oroszlan S, Luftig RB: Retroviral proteinases. In / Current Topics in Microbiology and Immunology Berlin, Heidelberg , Springer-Verlag 1990, 157:153鈥?85.
    7. Torruella M, Gordon K, Hohn T: Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins. / Embo J 1989,8(10):2819鈥?825.
    8. Hibino H, Roechan M, Sudarisman S: Association of two types of virus particules with Penyakit Habang (Tungro Disease) of rice in Indonesia. / Phytopathology 1978, 68:1412鈥?416. CrossRef
    9. Jones MC, Gough K, Dasgupta I, Subba Rao BL, Cliffe J, Qu R, Shen P, Kaniewska M, Blakebrough M, Davies JW, Beachy RN, Hull R: Rice tungro disease is caused by an RNA and a DNA virus. / Journal of General Virology 1991, 72:757鈥?61. CrossRef
    10. Hay JM, Jones MC, Blakebrough ML, Dasgupta I, Davies JW, Hull R: An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. / Nucleic Acids Research 1991,19(10):2615鈥?621. CrossRef
    11. Qu R, Bhattacharyaa M, Laco G, Kochko de A, Subba Rao BL, Kaniewska M, Elmer JS, Rochester DE, Smith CE, Beachy RN: Characterization of the genome of rice tungro bacilliform virus: comparison with commelina yellow mottle virus and caulimoviruses. / Virology 1991,185(1):354鈥?64. CrossRef
    12. Shen P, Kaniewska M, Smith C, Beachy RN: Nucleotide sequence and genomic organization of rice tungro spherical virus. / Virology 1993, 193:621鈥?30. CrossRef
    13. Le Gall O, Iwanami Y, Karasev AE, Jones T, Lehto K, Sanfa莽on H, Wellink J, Wetzel T, Yoshikawa N: Sequiviridae. / Virus Taxonomy, VIIIth Report of the ICTV / (Edited by: Fauquet C.M. MMAMJDUBLA). London , Elsevier/Academic Press 2005, 793鈥?98.
    14. Hibino H: Relations of rice tungro bacilliform and rice tungro spherical viruses with their vector Nephotettix virescens. / Ann Phytopath Soc Jap 1983,49(4):545鈥?53.
    15. Hibino H: Transmission of two rice tungro-associated viruses and rice waika virus from doubly or singly infected source of plants by leafhopper vectors. / Plant Disease 1983, 67:774鈥?77. CrossRef
    16. Bao Y, Hull R: Replication intermediates of rice tungro bacilliform virus DNA support a replication mechanism involving reverse transcription. / Virology 1994, 204:626鈥?33. CrossRef
    17. Hull R: Molecular biology of rice tungro viruses. / Annual Review of Phytopathology 1996, 34:275鈥?97. CrossRef
    18. Marmey P, Bothner B, Jacquot E, de Kochko A, Ong CA, Yot P, Siuzdak G, Beachy RN, Fauquet CM: Rice tungro bacilliform virus open reading frame 3 encodes a single 37-kDa coat protein. / Virology 1999, 253:319鈥?26. CrossRef
    19. Laco GS, Kent SBH, Beachy RN: Analysis of the proteolytic processing and activation of the rice tungro bacilliform virus reverse transcriptase. / Virology 1995, 208:207鈥?14. CrossRef
    20. Hay J, Grieco F, Druka A, Pinner M, Lee SC, Hull R: Detection of rice tungro bacilliform virus gene products in vivo. / Virology 1994,205(2):430鈥?37. CrossRef
    21. Kurowski MA, Bujnicki JM: Genesilico protein structure prediction metaserver. / Nucleic Acid Research 2003, 31:3305鈥?307. CrossRef
    22. Yasunaga T, Sagata N, Ikawa Y: Protease gene structure and env gene variability of the AIDS virus. / FEBS Lett 1986,199(2):145鈥?50. CrossRef
    23. Pearl LH, Taylor WR: A structural model for the retroviral proteases. / Nature 1987,329(6137):351鈥?54. CrossRef
    24. Miller M, Jaskolski M, Rao JK, Leis J, Wlodawer A: Crystal structure of a retroviral protease proves relationship to aspartic protease family. / Nature 1989,337(6207):576鈥?79. CrossRef
    25. Navia MA, Fitzgerald PM, McKeever BM, Leu CT, Heimbach JC, Herber WK, Sigal IS, Darke PL, Springer JP: Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. / Nature 1989,337(6208):615鈥?20. CrossRef
    26. Wlodawer A, Gustchina A: Structural and biochemical studies of retroviral proteases. / Biochim Biophys Acta 2000,1477(1鈥?):16鈥?4.
    27. Laco GS, Fitzgerald MC, Morris GM, Olson AJ, Kent SB, Elder JH: Molecular analysis of the feline immunodeficiency virus protease: generation of a novel form of the protease by autoproteolysis and construction of cleavage-resistant proteases. / J Virol 1997,71(7):5505鈥?511.
    28. Rose JR, Salto R, Craik CS: Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions. / J Biol Chem 1993,268(16):11939鈥?1945.
    29. Poorman RA, Tomasselli AG, Heinrikson RL, Kezdy FJ: A cumulative specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from statistical analysis of an extended substrate data base. / J Biol Chem 1991,266(22):14554鈥?4561.
    30. Pettit SC, Michael SF, Swanstrom R: The specificity of the HIV-1 protease. / Perspect Drug Discovery Design 1993, 1:69鈥?3. CrossRef
    31. Chait BT, Kent SBH: Weighing naked proteins: Practical high-accuracy mass measurement of peptides and proteins. / Science 1992, 257:1885鈥?894. CrossRef
    32. Fold Prediction Metaserver [http://genesilico.pl]
    33. Tress ML, Jones D, Valencia A: Predicting reliable regions in protein alignments from sequence profiles. / J Mol Biol 2003,330(4):705鈥?18. CrossRef
    34. Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: An automated protein homology-modeling server. / Nucleic Acids Res 2003,31(13):3381鈥?385. CrossRef
    35. Protein Structure Quality Score [http://www1.jcsg.org/psqs/]
    36. Centre for Molecular and Biomolecular Informatics [http://www.cmbi.kun.nl/gv/servers/]
    37. Koradi R, Billeter M, Wuthrich K: MOLMOL: a program for display and analysis of macromolecular structures. / J Mol Graph 1996,14(1):51鈥?, 29鈥?2. CrossRef
    38. Laemmli UK: Cleavage of the structural proteins during the assembly of the head of the bacteriophage T4. / Nature 1970, 227:680鈥?85. CrossRef
    39. Wu J, Adomat JM, Ridky TW, Louis JM, Leis J, Harrison RW, Weber IT: Structural basis for specificity of retroviral proteases. / Biochemistry 1998,37(13):4518鈥?526. CrossRef
    40. Berger A, Schechter I: Mapping the active site of papain with the aid of peptide substrates and inhibitors. / Philos Trans R Soc Lond B Biol Sci 1970,257(813):249鈥?64. CrossRef
  • 作者单位:Philippe Marmey (1)
    Ana Rojas-Mendoza (2)
    Alexandre de Kochko (1)
    Roger N Beachy (3)
    Claude M Fauquet (3)

    1. IRD, UMR 芦DGPC禄, B.P. 64501, 34394, Montpellier cedex 5, France
    2. Protein Design Group, Centro Nacional de Biotecnologia, Campus Universidad Autonoma Cantoblanco, 28049, Madrid, Spain
    3. Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
  • ISSN:1743-422X
文摘
Background Rice tungro bacilliform virus (RTBV) is a pararetrovirus, and a member of the family Caulimoviridae in the genus Badnavirus. RTBV has a long open reading frame that encodes a large polyprotein (P3). Pararetroviruses show similarities with retroviruses in molecular organization and replication. P3 contains a putative movement protein (MP), the capsid protein (CP), the aspartate protease (PR) and the reverse transcriptase (RT) with a ribonuclease H activity. PR is a member of the cluster of retroviral proteases and serves to proteolytically process P3. Previous work established the N- and C-terminal amino acid sequences of CP and RT, processing of RT by PR, and estimated the molecular mass of PR by western blot assays. Results A molecular mass of a protein that was associated with virions was determined by in-line HPLC electrospray ionization mass spectral analysis. Comparison with retroviral proteases amino acid sequences allowed the characterization of a putative protease domain in this protein. Structural modelling revealed strong resemblance with retroviral proteases, with overall folds surrounding the active site being well conserved. Expression in E. coli of putative domain was affected by the presence or absence of the active site in the construct. Analysis of processing of CP by PR, using pulse chase labelling experiments, demonstrated that the 37 kDa capsid protein was dependent on the presence of the protease in the constructs. Conclusion The findings suggest the characterization of the RTBV protease domain. Sequence analysis, structural modelling, in vitro expression studies are evidence to consider the putative domain as being the protease domain. Analysis of expression of different peptides corresponding to various domains of P3 suggests a processing of CP by PR. This work clarifies the organization of the RTBV polyprotein, and its processing by the RTBV protease.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700