Lithium Iron Phosphate Powders and Coatings Obtained by Means of Inductively Coupled Thermal Plasma
详细信息    查看全文
  • 作者:K. Major ; J. Veilleux ; G. Brisard
  • 关键词:coatings ; inductively coupled thermal plasma ; LiFePO4 ; lithium ; ion battery ; nanopowders ; SPPS
  • 刊名:Journal of Thermal Spray Technology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:25
  • 期:1-2
  • 页码:357-364
  • 全文大小:1,683 KB
  • 参考文献:1.Y. Abu-Lebdeh et al., Nanostructure Science and Technology, Nanotechnology for Lithium-Ion Batteries, D.J. Lockwood, Ed., Springer, New York, 2013, p 282 CrossRef
    2.B.L. Ellis et al., Positive Electrode Materials for Li-Ion and Li-Batteries, Chem. Mater., 2010, 22(3), p 691-714CrossRef
    3.M.V. Reddy et al., Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries, Chem. Rev., 2013, 113(7), p 5364-5457CrossRef
    4.B. Scrosati et al., Lithium Batteries: Status, Prospects and Future, J. Power Sources, 2010, 195(9), p 2419-2430CrossRef
    5.M. Armand et al., Building Better Batteries, Nature, 2008, 451(7179), p 652-657CrossRef
    6.W. Peng et al., A Novel Sol–Gel Method Based on FePO4 2H2O to Synthesize Submicrometer Structured LiFePO4/C Cathode Material, J. Power Sources, 2011, 196(5), p 2841-2847CrossRef
    7.W.-J. Zhang, Structure and Performance of LiFePO4 Cathode Materials: A Review, J. Power Sources, 2011, 196(6), p 2962-2970CrossRef
    8.D. Jugović et al., A Review of Recent Developments in the Synthesis Procedures of Lithium Iron Phosphate Powders, J. Power Sources, 2009, 190(2), p 538-544CrossRef
    9.J. Guo et al., Development of Nanopowder Synthesis Using Induction Plasma, Plasma Sci. Technol., 2010, 12(2), p 188-199CrossRef
    10.P.L. Fauchais et al., Thermal Spray Fundamentals: From Powder to Part, Springer, New York, 2014, p 1566CrossRef
    11.T. Suetsuna et al., Synthesis of Self-Forming Core/Shell Nanoparticles of Magnetic Metal/Nonmagnetic Oxide, Acta Mater., 2014, 78, p 320-327CrossRef
    12.P. Fauchais et al., Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-59CrossRef
    13.A. Killinger et al., Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Therm. Spray Technol., 2011, 20(4), p 677-695CrossRef
    14.C. Muoto et al., Identification of Desirable Precursor Properties for Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2011, 20(4), p 802-816CrossRef
    15.É. Darthout et al., Lu2O3-SiO2-ZrO2 Coatings for Environmental Barrier Application by Solution Precursor Plasma Spraying and Influence of Precursor Chemistry, J. Therm. Spray Technol., 2014, 23(3), p 325-332CrossRef
    16.P.S. Mohanty, In-Situ Plasma Synthesis and Deposition Platform for Energy Storage Devices, Adv. Mater. Process., 2011, 169(11), p 63-64
    17.N. Pentyala et al., Binder Free Porous Ultrafine/Nano Structured LiCoO2 Cathode from Plasma Deposited Cobalt, Electrochim. Acta, 2011, 56(27), p 9851-9859CrossRef
    18.V. Varadaraajan et al., Direct Synthesis of Nanostructured V2O5 Films Using Solution Plasma Spray Approach for Lithium Battery Applications, J. Power Sources, 2011, 196(24), p 10704-10711CrossRef
    19.P.S. Mohanty et al., Direct Thermal Spray Synthesis of Li Ion Battery Components, U.S. Patent Application 12/855,789, 13, Aug 2010.
    20.R. Tummala et al., Binder Free, Porous and Nanostructured Co3O4 Anode for Li-Ion Batteries from Solution Precursor Plasma Deposition, J. Power Sources, 2012, 199, p 270-277CrossRef
    21.P. Lamontagne et al., Synthesis of Silicon Nanowires from Carbothermic Reduction of Silica Fume in RF Thermal Plasma, Phys. Status Solidi A, 2014, 211(7), p 1610-1616CrossRef
    22.F. Quesnel et al., “Synthesis of Lithium Titanates Nanoparticles in an Inductive Plasma Reactor,” OREBA 1.0. Montreal, QC, Canada, 2014.
    23.Y.-H. Rho et al., Surface Chemistry of LiFePO4 Studied by Mössbauer and X-Ray Photoelectron Spectroscopy and Its Effect on Electrochemical Properties, J. Electrochem. Soc., 2007, 154(4), p A283-A289CrossRef
    24.K. Saravanan et al., Storage Performance of LiFePO4 Nanoplates, J. Mater. Chem., 2009, 19(5), p 605-610CrossRef
    25.L. Castro et al., Aging Mechanisms of LiFePO4//Graphite Cells Studied by XPS: Redox Reaction and Electrode/Electrolyte Interfaces, J. Electrochem. Soc., 2012, 159(4), p A357-A363CrossRef
    26.P.P. Prosini et al., Determination of the Chemical Diffusion Coefficient of Lithium in LiFePO4, Solid State Ionics, 2002, 148(1-2), p 45-51CrossRef
    27.A.V. Churikov et al., Determination of Lithium Diffusion Coefficient in LiFePO4 Electrode by Galvanostatic and Potentiostatic Intermittent Titration Techniques, Electrochim. Acta, 2010, 55(8), p 2939-2950CrossRef
  • 作者单位:K. Major (1)
    J. Veilleux (2)
    G. Brisard (1)

    1. Department of Chemistry, Université de Sherbrooke, 2500 Boul. de l’Université, Sherbrooke, QC, J1K 2R1, Canada
    2. Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, 2500 Boul. de l’Université, Sherbrooke, QC, J1K 2R1, Canada
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Tribology, Corrosion and Coatings
    Materials Science
    Characterization and Evaluation Materials
    Operating Procedures and Materials Treatment
    Analytical Chemistry
  • 出版者:Springer Boston
  • ISSN:1544-1016
文摘
Lithium-ion batteries have high energy efficiency and good cycling life and are considered as one of the best energy storage device for hybrid and/or electrical vehicle. Still, several problems must be solved prior to a broad adoption by the automotive industry: energy density, safety, and costs. To enhance both energy density and safety, the current study aims at depositing binder-free cathode materials using inductively coupled thermal plasma. In a first step, lithium iron phosphate (LiFePO4) powders are synthesized in an inductively coupled thermal plasma reactor and dispersed in a conventional polyvinylidene fluoride (PVDF) binder. Then, binder-free LiFePO4 coatings are directly deposited onto nickel current collectors by solution precursor plasma spraying (SPPS). The morphology, microstructure, and composition of the synthesized LiFePO4 powders and coatings are fully characterized by electronic microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy (XPS). Quantifying Li with XPS requires the substitution of iron with manganese in the SPPS precursors (LiMPO4, where M = Fe or Mn). The plasma-derived cathodes (with and without PVDF binder) are assembled in button cells and tested. Under optimized plasma conditions, cyclic voltammetry shows that the electrochemical reversibility of plasma-derived cathodes is improved over that of conventional sol-gel-derived LiFePO4 cathodes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700