Preparation of Nanomaterials in Flow at Supercritical Conditions from Coordination Complexes
详细信息    查看全文
  • 关键词:Continuous processes ; Microfluidics ; Nanomaterial synthesis ; Supercritical fluids
  • 刊名:Topics in Organometallic Chemistry
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:57
  • 期:1
  • 页码:177-211
  • 全文大小:1,769 KB
  • 参考文献:1.Coe S, Woo WK, Bawendi M, Bulovic V (2002) Nature 420:800–803CrossRef
    2.Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Adv Colloid Interface Sci 123–126:471–485CrossRef
    3.Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013–2016CrossRef
    4.Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, Bawendi MG (2008) J Am Chem Soc 130:1274–1284CrossRef
    5.Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Chem Rev 112:2739–2779CrossRef
    6.Valera FE, Quaranta M, Moran A, Blacker J, Armstrong A, Cabral JT, Blackmond DG (2010) Angew Chem Int Ed 49:2478–2485CrossRef
    7.Shahbazali E, Hessel V, Noel T, Wang Q (2014) Nanotechnol Rev 3:65–86
    8.Marre S, Jensen KF (2010) Chem Soc Rev 39:1183–1202CrossRef
    9.Gomez L, Sebastian V, Irusta S, Ibarra A, Arruebo M, Santamaria J (2014) Lab Chip 14:325–332CrossRef
    10.Chakrabarty A, Marre S, Landis RF, Rotello VM, Maitra U, Guerzo AD, Aymonier C (2015) J Mater Chem C 3:7561–7566CrossRef
    11.Hessel V, Kralisch D, Kockmann N, Noel T, Wang Q (2013) ChemSusChem 6:746–789CrossRef
    12.Marre S, Roig Y, Aymonier C (2012) J Supercrit Fluids 66:251–264CrossRef
    13.Cansell F, Aymonier C (2009) J Supercrit Fluids 47:508–516CrossRef
    14.Stouten SC, Noël T, Wang Q, Hessel V (2014) Chem Eng Process Process Intensif 83:26–32CrossRef
    15.Cansell F, Aymonier C, Loppinet-Serani A (2003) Curr Opin Solid State Mater Sci 7:331–340CrossRef
    16.Desimone JM, Maury EE, Menceloglu YZ, McClain JB, Romack TJ, Combes JR (1994) Science 265:356–359CrossRef
    17.Lecoutre C, Guillaument R, Marre S, Garrabos Y, Beysens D and Hahn I (2015) Phys Rev E 91, 060101
    18.Abraham FF (1977) Chem Phys Lett 47:179–181CrossRef
    19.Kwang Chu C, Robert LR (1979) Equations of state in engineering and research. American Chemical Society, Washington
    20.Pinho B, Girardon S, Bazer-Bachi F, Bergeot G, Marre S, Aymonier C (2014) Lab Chip 14:3843–3849CrossRef
    21.Bazaev AR, Abdulagatov IM, Bazaev EA, Abdurashidova A (2007) J Chem Thermodyn 39:385–411CrossRef
    22.Chrastil J (1982) J Phys Chem 86:3016–3021CrossRef
    23.Kruse A, Vogel H (2008) Chem Eng Technol 31:23–32CrossRef
    24.Kruse A, Vogel H (2008) Chem Eng Technol 31:1241–1245CrossRef
    25.Cochran HD, Cummings PT, Karaborni S (1992) Fluid Phase Equilib 71:1–16CrossRef
    26.Aymonier C, Loppinet-Serani A, Reveron H, Garrabos Y, Cansell F (2006) J Supercrit Fluids 38:242–251CrossRef
    27.Adschiri T, Lee YW, Goto M, Takami S (2011) Green Chem 13:1380–1390CrossRef
    28.Desmoulins-Krawiec S, Aymonier C, Loppinet-Serani A, Weill F, Gorsse S, Etourneau J, Cansell F (2004) J Mater Chem 14:228–232CrossRef
    29.Aymonier C, Erriguible A, Marre S, Serani A and Cansell F (2007) Int J Chem Reactor Eng 5: Article A77
    30.Dahl JA, Maddux BLS, Hutchison JE (2007) Chem Rev 107:2228–2269CrossRef
    31.Philippot G, Elissalde C, Maglione M, Aymonier C (2014) Adv Powder Technol 25:1415–1429CrossRef
    32.Cansell F, Chevalier B, Demourgues A, Etourneau J, Even C, Pessey V, Petit S, Tressaud A, Weill F (1999) J Mater Chem 9:67–75CrossRef
    33.Marre S, Aymonier C, Subra P and Mignard E (2009) Appl Phys Lett 95:134105
    34.Roig Y, Marre S, Cardinal T and Aymonier C (2011) Angew Chem Int Ed, 50:12071–12074
    35.Takami S, Sugioka KI, Ozawa K, Tsukada T, Adschiri T, Sugimoto K, Takenaka N, Saito Y (2015) Phys Procedia 69:564–569CrossRef
    36.Tighe CJ, Gruar RI, Ma CY, Mahmud T, Wang XZ, Darr JA (2012) J Supercrit Fluids 62:165–172CrossRef
    37.Dunne PW, Munn AS, Starkey CL, Lester EH (2015) Chem Commun 51:4048–4050CrossRef
    38.Tiggelaar RM, Benito-Lopez F, Hermes DC, Rathgen H, Egberink RJM, Mugele FG, Reinhoudt DN, van den Berg A, Verboom W, Gardeniers H (2007) Chem Eng J 131:163–170CrossRef
    39.de Mello AJ (2006) Nature 422:394–402
    40.Jensen KF, Ajmera SK, Firebaugh SL, Floyd TM, Franz AJ, Losey MW, Quiram D, Schmidt MA (2000) In: Hoyle W (ed) Automated synthetic methods for speciality chemicals. Royal Society of Chemistry, Cambridge, pp 14–24
    41.Gervais T, Jensen KF (2006) Chem Eng Sci 61:1102–1121CrossRef
    42.Marre S, Adamo A, Basak S, Aymonier C, Jensen KF (2010) Ind Eng Chem Res 49:11310–11320CrossRef
    43.Oosterbroek RE, Hermes DC, Kakuta M, Benito-Lopez F, Gardeniers JGE, Verboom W, Reinhoudt DN, van den Berg A (2006) Microsyst Technol 12:450–454CrossRef
    44.Trachsel F, Hutter C, von Rohr PR (2008) Chem Eng J 135:S309–S316CrossRef
    45.Goodwin AK, Rorrer GL (2008) Ind Eng Chem Res 47:4106–4114CrossRef
    46.Goodwin AK, Rorrer GL (2009) Energy Fuel 23:3818–3825CrossRef
    47.de la Iglesia O, Sebastian V, Mallada R, Nikolaidis G, Coronas J, Kolb G, Zapf R, Hessel V, Santamaria J (2007) Catal Today 125:2–10CrossRef
    48.Kikutani Y, Hibara A, Uchiyama K, Hisamoto H, Tokeshi M, Kitamori T (2002) Lab Chip 2:193–196CrossRef
    49.Mazurczyk R, El Khoury G, Dugas V, Hannes B, Laurenceau E, Cabrera M, Krawczyk S, Souteyrand E, Cloarec JP, Chevolot Y (2008) Sens Actuators B Chem 128:552–559CrossRef
    50.Jensen KF (2006) MRS Bull 31:101–107CrossRef
    51.Kelley SC, Deluga GA, Smyrl WH (2002) AlChE J 48:1071–1082CrossRef
    52.Sabate N, Esquivel JP, Santander J, Torres N, Gracia I, Ivanov P, Fonseca L, Figueras E, Cane C (2008) J New Mater Electrochem Syst 11:143–146
    53.Wu XH, Guo H, Ye F, Ma CF (2009) Prog Chem 21:1344–1348
    54.Appelhans D, Ferse D, Adler HJP, Plieth W, Fikus A, Grundke K, Schmitt FJ, Bayer T, Adolphi B (2000) Colloid Surface A 161:203–212CrossRef
    55.Kulkarni SA, Vijayamohanan KP (2007) Surf Sci 601:2983–2993CrossRef
    56.Srinivasan U, Houston MR, Howe RT, Maboudian R (1998) J Microelectromech Syst 7:252–260CrossRef
    57.Lorber N, Sarrazin F, Guillot P, Panizza P, Colin A, Pavageau B, Hany C, Maestro P, Marre S, Delclos T, Aymonier C, Subra P, Prat L, Gourdon C, Mignard E (2011) Lab Chip 11:779–787CrossRef
    58.Couto R, Chambon S, Aymonier C, Mignard E, Pavageau B, Erriguible A, Marre S (2015) Chem Commun 51:1008–1011CrossRef
    59.Gunther A, Jensen KF (2006) Lab Chip 6:1487–1503CrossRef
    60.Song H, Chen DL, Ismagilov RF (2006) Angew Chem Int Ed 45:7336–7356CrossRef
    61.Glasgow I, Aubry N (2003) Lab Chip 3:114–120CrossRef
    62.Levenspiel O (2002) Chem Eng Sci 57:4691–4696CrossRef
    63.Marre S, Park J, Rempel J, Guan J, Bawendi MG, Jensen KF (2008) Adv Mater 20:4830–4834CrossRef
    64.Marre S, Baek J, Park J, Bawendi MG, Jensen KF (2009) JALA 14:367–373
    65.Baek J, Allen PM, Bawendi MG, Jensen KF (2011) Angew Chem Int Ed 50:627–630CrossRef
    66.Watkins JJ, Blackburn JM, McCarthy TJ (1999) Chem Mater 11:213–215CrossRef
    67.Moner-Girona M, Roig A, Molins E, Llibre J (2003) J Sol-Gel Sci Technol 26:645–649CrossRef
    68.Slostowski C, Marre S, Babot O, Toupance T, Aymonier C (2012) Langmuir 28:16656–16663CrossRef
    69.Cabanas A, Darr JA, Lester E and Poliakoff M (2000) Chem Commun 901–902
    70.Pedersen BL, Yin H, Birkedal H, Nygren M, Iversen BB (2010) Chem Mater 22:2375–2383CrossRef
    71.Sui R, Charpentier P (2012) Chem Rev 112:3057–3082CrossRef
    72.Znaidi L, Chhor K, Pommier C (1996) Mater Res Bull 31:1527–1535CrossRef
    73.Gourinchas Courtecuisse V, Chhor K, Bocquet JF, Pommier C (1996) Ind Eng Chem Res 35:2539–2545CrossRef
    74.Bocquet JF, Chhor K, Pommier C (1999) Mater Chem Phys 57:273–280CrossRef
    75.Reverón H, Elissalde C, Aymonier C, Bidault O, Maglione M, Cansell F (2005) J Nanosci Nanotechnol 5:1741–1744CrossRef
    76.Reverón H, Elissalde C, Aymonier C, Bousquet C, Maglione M, Cansell F (2006) Nanotechnology 17:3527CrossRef
    77.Philippot G, Jensen KMØ, Christensen M, Elissalde C, Maglione M, Iversen BB, Aymonier C (2014) J Supercrit Fluids 87:111–117CrossRef
    78.Philippot G, Albino M, Chung UC, Josse M, Elissalde C, Maglione M, Aymonier C (2015) Mater Des 86:354–360
    79.Philippot G, Albino M, Epherre R, Chevallier G, Beynet Y, Manière C, Weibel A, Peigney A, Deluca M, Elissalde C, Maglione M, Aymonier C and Estournès C (2015) Adv Electron Mater 1
    80.Giroire B, Marre S, Garcia A, Cardinal T and Aymonier C (2016) React Chem Eng, DOI: 10.​1039/​C5RE00039D
    81.Moisan S, Marty JD, Cansell F, Aymonier C (2008) Chem Commun 1428–1430
    82.Dumont MF, Moisan S, Aymonier C, Marty JD, Mingotaud C (2009) Macromolecules 42:4937–4940CrossRef
    83.Pascu O, Moisan S, Marty J-D, Aymonier C (2014) J Phys Chem C 118:14017–14025CrossRef
    84.Pascu O, Marre S, Aymonier C, Roig A (2013) Nanoscale 5:2126–2132CrossRef
    85.Christian I, Benjamin S, Christopher P, Stefan K, Tonino G, Andreas H (2015) Nanotechnology 26:085604CrossRef
    86.Roig Y, Marre S, Cardinal T, Aymonier C (2011) Angew Chem Int Ed 50:12071–12074CrossRef
    87.Ilin ES, Marre S, Jubera V, Aymonier C (2013) J Mater Chem C 1:5058–5063CrossRef
    88.Gendrineau T, Marre S, Vaultier M, Pucheault M, Aymonier C (2012) Angew Chem Int Ed 51:8525–8528CrossRef
    89.Guerrand HDS, Marciasini LD, Gendrineau T, Pascu O, Marre S, Pinet S, Vaultier M, Aymonier C, Pucheault M (2014) Tetrahedron 70:6156–6161CrossRef
    90.Pascu O, Marciasini L, Marre S, Vaultier M, Pucheault M, Aymonier C (2014) Nanoscale 6:9864–9864
  • 作者单位:Samuel Marre (14)
    Cyril Aymonier (14)

    14. Supercritical Fluids Group, CNRS, Univ. Bordeaux, ICMCB, UPR9048, 33600, Pessac, France
  • 丛书名:Organometallic Flow Chemistry
  • ISBN:978-3-319-33243-7
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Organometallic Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1616-8534
  • 卷排序:57
文摘
The development of nanosciences and nanotechnologies in the twenty-first century is linked to the progresses made with the nanomaterial synthesis approaches. Control, reproducibility, scalability, and sustainability are the key issues for the design of advanced nanostructured materials. Among the synthesis methods, the supercritical fluid-based flow process presents an efficient alternative for the continuous, controlled, scalable, and sustainable synthesis of nanomaterials, especially from coordination complexes, which is the main topic of this book chapter. First, the supercritical fluids are defined and their specific properties introduced with the possibility to adjust them playing with pressure, temperature, and composition for mixtures. The case of water is also described underlining the remarkable evolution from a polar solvent in normal conditions of pressure and temperature to a nonpolar one at supercritical conditions. After, the typical supercritical flow processes of nanomaterials are technically described in details with the different elements, namely injection, mixers, reactors, and pressure regulators. This allows introducing the main operating parameters giving access to a continuous and control synthesis of nanomaterials by mastering thermodynamics, hydrodynamics, and chemistry. Coupling chemistry of coordination complexes and chemical engineering in supercritical fluids leads to the design of high-quality and unique nanostructures. This is in particular illustrated with the synthesis of nanooxides from flow supercritical sol–gel syntheses. The access to highly crystallized oxides with controlled compositions is discussed with the synthesis of BaTiO3-based materials. The supercritical route is also a versatile method. Beyond the continuous production of nanooxides, it is also possible to prepare in flow nitrides, sulfides, selenides, phosphides, …, nanocrystals (GaN, CdS, CdSe, InP, …). Adding surfactants in situ or ex situ playing with the process offers the possibility to design hybrid organic/inorganic nanoparticles with a control of the strength of the bond at the interface between the inorganic core and the organic shell. This chapter is ended with the description of supercritical coflow reactors, which allow a high level of control of the synthesis operating conditions. All the bricks are now available from a chemical engineering and coordination complex chemistry point of view to go towards multisteps and one pot processes for the continuous and sustainable design of advanced and multifunctional nanomaterials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700