Mitochondrial respiration of the photosynthesizing cell
详细信息    查看全文
  • 作者:E. V. Garmash
  • 关键词:plants ; photosynthesis ; respiration in the light ; mitochondria ; chloroplasts ; respiratory substrates ; tricarboxylic acid cycle (TCA) ; photorespiration ; alternative oxidase ; type II NAD(P)H dehydrogenases ; nonphosphorylating pathways
  • 刊名:Russian Journal of Plant Physiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:63
  • 期:1
  • 页码:13-25
  • 全文大小:479 KB
  • 参考文献:1.Semikhatova, O.A. and Zalenskii, O.V., Photosynthesis and respiratory coupling, Fiziologiya fotosinteza (Physiology of Photosynthesis), Nichiporovich, A.A., Ed., Moscow: Nauka, 1982, pp. 130–145.
    2.Murray, I.A., The kinetics of photosynthesis and respiration in maize after dark period, Sov. Plant Physiol., 1984, vol. 31, pp. 433–441.
    3.Filippova, L.A., Mamushina, E.K., and Zubkova, E.K., Development of ideas about the interactions between photosynthesis and respiration, Ekologo-fiziologicheskie issledovaniya fotosinteza i dykhaniya rastenii (Ecological and Physiological Investigations of Photosynthesis and Respiration in Plants), Semikhatova, O.A., Ed., Leningrad: Nauka, 1989, pp. 168–183.
    4.Chmora, S.N., Egorov, V.P., and Alekhin, V.I., Determination of leaves gas exchange on the light and respiration when switching light–dark for two gases–CO2 and O2. 1. The ratio O2/CO2 in gas exchange on the light and respiration when switching light–dark in ontogenesis of the donor function in leaves of C3 and C4 plants, Sov. Plant Physiol.., 1992, vol. 39, pp. 775–785.
    5.Raghavendra, A.S. and Padmasree, K., Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation, Trends Plant Sci., 2003, vol. 8, pp. 546–553.CrossRef PubMed
    6.Noguchi, K. and Yoshida, K., Interaction between photosynthesis and respiration in illuminated leaves, Mitochondrion., 2008, vol. 8, pp. 87–99.CrossRef PubMed
    7.Nunes-Nesi, A., Araújo, W.L., and Fernie, A.R., Targeting mitochondrial metabolism and machinery as a means to enhance photosynthesis, Plant Physiol., 2011, vol. 155, pp. 101–107.PubMedCentral CrossRef PubMed
    8.Tcherkez, G., Boex-Fontvieille, E., Mahé, A., and Hodges, M., Respiratory carbon fluxes in leaves, Curr. Opin. Plant Biol., 2012, vol. 15, pp. 308–314.CrossRef PubMed
    9.Igamberdiev, A.U., Eprintsev, A.T., Fedorin, D.N., and Popov, V.N., Phytochrome-mediated regulation of plant respiration and photorespiration, Plant Cell Environ., 2014, vol. 37, pp. 290–299.CrossRef PubMed
    10.Golovko, T.K., Dykhanie rastenii (fiziologicheskie aspekty) (Plant Respiration: Physiological Aspects), St. Petersburg: Nauka, 1999.
    11.Mamushina, N.S. and Zubkova, E.K., The functioning of the Krebs cycle under illumination and natural CO2 concentration in autotrophic leaf tissues in C3 plants, Sov. Plant Physiol., 1992, vol. 39, pp. 692–700.
    12.Murray, I.A. and Velichkov, D.K., The rate of visible photosynthesis and respiration in sunflower and maize, Sov. Plant Physiol., 1981, vol. 28, pp. 1109–1118.
    13.Murray, I.A. and Rakhmankulova, Z.F., Ratio of photosynthesis and respiratory components in sugar beet during vegetative growth, Sov. Plant Physiol., 1990, vol. 37, pp. 462–467.
    14.Chmora, S.N., Slobodskaya, G.A., and Nichiporovich, A.A., The ratio O2/CO2 in gas exchange of C3 and C4 plant leaves under normal and low oxygen concentration, Sov. Plant Physiol., 1983, vol. 30, pp. 906–914.
    15.Ribas-Carbo, M., Robinson, S.A., GonzálezMeler, M.A., Lennon, A.M., Giles, L., Siedow, J.N., and Berry, J.A., Effects of light on respiration and oxygen isotope fractionation in soybean cotyledons, Plant Cell Environ., 2000, vol. 23, pp. 983–989.CrossRef
    16.Zhang, D.W., Xu, F., Zhang, Z.W., Chen, Y.E., Du, J.B., Jia, S.D., Yuan, S., and Lin, H.H., Effects of light on cyanide-resistant respiration and alternative oxidase function in Arabidopsis seedlings, Plant Cell Environ., 2010, vol. 33, pp. 2121–2131.CrossRef PubMed
    17.Garmash, E.V., Dymova, O.V., Malyshev, R.V., Plyusnina, S.N., and Golovko, T.K., Developmental changes in energy dissipation in etiolated wheat seedlings during the greening process, Photosynthetica., 2013, vol. 51, pp. 497–508.CrossRef
    18.Nunes-Nesi, A., Sweetlove, L.J., and Fernie, A.R., Operation and function of the tricarboxylic cycle in the illuminated leaf, Physiol. Plant., 2007, vol. 129, pp. 45–56.CrossRef
    19.Krömer, S., Respiration during photosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, vol. 46, pp. 45–70.CrossRef
    20.Dinakar, C., Raghavendra, A.S., and Padmasree, K., Importance of AOX pathway in optimizing photosynthesis under high light stress: role of pyruvate and malate in activating of AOX, Physiol. Plant., 2010, vol. 139, pp. 13–26.CrossRef PubMed
    21.Laisk, A.Kh., Kinetika fotosinteza i fotodykhaniya C3 rastenii (Kinetics of Photosynthesis and Photorespiration in C3-Plants), Moscow: Nauka, 1977.
    22.Pärnik, T. and Keerberg, O., Advanced radiogasometric method for the determination of the rates of photorespiratory and respiratory decarboxilations of primery and stored photosynthates under steady-state photosynthesis, Physiol. Plant., 2007, vol. 129, pp. 34–44.CrossRef
    23.Walters, R.G., Ibrahim, D.G., Horton, P., and Kruge, N.J., A mutant of Arabidopsis lacking the triose-phosphate/phosphate translocator reveals metabolic regulation of starch breakdown in the light, Plant Physiol., 2004, vol. 135, pp. 891–906.PubMedCentral CrossRef PubMed
    24.Gardeström, P., Igamberdiev, A.U., and Raghavendra, A.S., Mitochondrial functions in the light and significance to carbon–nitrogen interaction, Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, Foyer, C.H. and Noctor, G., Eds., Dordrecht: Kluwer, 2002, pp. 151–172.
    25.Pärnik, T.R., Voronin, P.Yu., Ivanova, Kh.N., and Keerberg, O.F., Respiratory CO2 fluxes in photosynthesizing leaves of C3 species varying in rates of starch synthesis, Russ. J. Plant Physiol., 2002, vol. 49, pp. 729–735.CrossRef
    26.Neuhaus, H.E. and Emes, M.J., Nonphotosynthetic metabolism in plastids, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, vol. 51, pp. 111–140.CrossRef PubMed
    27.Fondy, B.R., Geiger, D.R., and Servaites, J.C., Photosynthesis, carbohydrate metabolism, and export in Beta vulgaris L. and Phaseolus vulgaris L. during square and sinusoidal light regimes, Plant Physiol., 1989, vol. 89, pp. 396–402.PubMedCentral CrossRef PubMed
    28.Semikhatova, O.A. and Chirkova, T.V., Fiziologiya dykhaniya rastenii (Physiology of Plant Respiration), St. Petersburg: S.-Peterb. Gos. Univ., 2001.
    29.Filippova, L.A., Mamushina, E.K., Zubkova E.K., Miroslavov E.A., and Kudinova, L.I., Relationships between photosynthesis and respiration in assimilating cells of different zones in growing barley plant, Sov. Plant Physiol., 1986, vol. 33, pp. 66–73.
    30.Mamushina, N.S. and Zubkova, E.K., Major steps of dark respiration in light in C3 plants differing in their seasonal growth patterns, Russ. J. Plant Physiol., 1995, vol. 42, pp. 24–31.
    31.Tcherkez, G., Cornic, G., Bligny, R., Gout, E., and Ghashghaie, J., In vivo respiratory metabolism of illuminated leaves, Plant Physiol., 2005, vol. 138, pp. 1596–1606.PubMedCentral CrossRef PubMed
    32.Jeanneau, M., Vidal, J., Gousset-Dupont, A., Lebouteiller, B., Hodges, M., Gerentes, D., and Perez, P., Manipulating PEPC levels in plants, J. Exp. Bot., 2002, vol. 53, pp. 1837–1845.
    33.Knowles, V.L., McHugh, S.G., Hu, Z., Dennis, D.T., Miki, B.L., and Plaxton, W.C., Altered growth of transgenic tobacco lacking leaf cytosolic pyruvate kinase, Plant Physiol., 1998, vol. 116, pp. 45–51.PubMedCentral CrossRef PubMed
    34.Tcherkez, G., Mahé, A., Gauthier, P., Mauve, C., Gout, E., Bligny, R., Cornic, G., and Hodges, M., In folio respiratory fluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid’ cycle’ in illuminated leaves, Plant Physiol., 2009, vol. 151, pp. 620–630.PubMedCentral CrossRef PubMed
    35.Atkin, O.K., Millar, A.H., Gardeströ m, P., and Day, D.A., Photosynthesis, carbohydrate metabolism and respiration in leaves of higher plants, Photosynthesis: Physiology and Metabolism, Leegood, R.C., Sharkey, T.D., and von Caemmerer, S., Eds., Dordrecht: Kluwer, 2000, pp. 153–175.CrossRef
    36.Thum, K.E., Shin, M.J., Palenchar, P.M., Kouranov, A., and Coruzzi, G.M., Genome-wide investigation of light and carbon signaling interactions in Arabidopsis, Genome Biol., 2004, vol. 5: R10.
    37.Tepperman, J.M., Hudson, M.E., Khanna, R., Zhu, T., Chang, S.H., Wang, X., and Quail, P.H., Expression profiling of phyb mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation, Plant J., 2004, vol. 38, pp. 725–739.CrossRef PubMed
    38.Igamberdiev, A.U. and Gardeström, P., Regulation of NADand NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves, Biochim. Biophys. Acta., 2003, vol. 1606, pp. 117–125.CrossRef PubMed
    39.Barbour, M.M., Hanson, D.T., Tcherkez, G., Bickford, C.P., and McDowell, M.G., A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leafrespired CO2, Plant Cell Environ., 2007, vol. 30, pp. 468–482.
    40.Gessler, A., Tcherkez, G., Karyanto, O., Keitel, C., Ferrio, J.P., Ghashghaie, J., Kreuzwieser, J., and Farguhar, G.D., On the metabolic origin of the carbon isotope composition of CO2 evolved from darkened lightacclimated leaves in Ricinus communis, New Phytol., 2009, vol. 181, pp. 374–386.CrossRef PubMed
    41.Scheible, W.R., Krapp, A., and Stitt, M., Reciprocal diurnal changes of PEPC expression, cytosolic pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves, Plant Cell Environ., 2000, vol. 23, pp. 1155–1167.CrossRef
    42.Popov, V.N., Eprintsev, A.T., Fedorin, D.N., and Igamberdiev, A.U., Succinate dehydrogenase in Arabidopsis thaliana is regulated by light via phytochrome A, FEBS Lett., 2010, vol. 584, pp. 199–202.CrossRef PubMed
    43.Garmash, E.V., Grabelhych, O.I., Velegzhaninov, I.O., Borovik, O.A., Dalke, I.V., Voinikov, V.K., and Golovko, T.K., Light regulation of AOX pathway during greening of etiolated wheat seedlings, J. Plant Physiol., 2015, vol. 174, pp. 75–84. http://​dxdoiorg/​10.​1016/​jjplph.​2014.​09.​016CrossRef PubMed
    44.Turner, S.R., Hellens, R., Ireland, R., Ellis, N., and Rawsthorne, S., The organization and expression of the gene encoding the mitochondrial glycine decarboxylase complex and serine hydroxymethyltransferase in pea (Pisum sativum), Mol. Gen. Genet., 1993, vol. 236, pp. 402–408.CrossRef PubMed
    45.McClung, C.R., Hsu, M., Painter, J.E., Gagne, J.M., Karlsberg, S.D., and Salomé, P.A., Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase, Plant Physiol.., 2000, vol. 123, pp. 381–392.PubMedCentral CrossRef PubMed
    46.Chikov, V.I., Photorespiration, Soros. Obraz. Zh., 1996, no. 11, pp. 2–8.
    47.Garmash, E., Khrystin, M., Dymova, O., and Golovko, T., Chloroplasts chlorophyll–protein complexes and chlorophyll fluorescence in wheat seedling during greening, in Photosynthetic Pigments–Chemical Structure, Biological Function and Ecology, Golovko, T., Gruszeski, W., Prasad, M.N.V., and Strzaka, K., Eds., Syktyvkar: Komi Sci. Centre, Ural Branch Russ. Acad. Sci., 2014, pp. 123–139.
    48.Igamberdiev, A.U., Bykova, N.V., Lea, P.J., and Gardeström, P., The role of photorespiration in redox and energy balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase, Physiol. Plant., 2001, vol. 111, pp. 427–438.CrossRef PubMed
    49.Keys, A.J. and Leegood, R.C., Photorespiratory carbon and nitrogen recycling: evidence from mutant and transgenic plants, Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, Foyer, C.H. and Noctor, G., Eds., Dordrecht: Kluwer, 2002, pp. 115–134.
    50.Scheibe, R., Backhausen, J.E., Emmerlich, V., and Holtgrefe, S., Strategies to maintain redox homeostasis during photosynthesis under changing conditions, J. Exp. Bot., 2005, vol. 56, pp. 1481–1489.CrossRef PubMed
    51.Dry, I.B., Dimitriadis, E., Ward, A.D., and Wiskich, J.T., The photorespiratory hydrogen shuttle. Synthesis of phthalonic acid and its use in the characterization of the malate/aspartate shuttle in pea (Pisum sativum) leaf mitochondria, Biochem. J.., 1987, vol. 245, pp. 669–675.PubMedCentral CrossRef PubMed
    52.Flügge, U.-L., Phospate translocators in plastids, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 50, pp. 27–45.CrossRef PubMed
    53.Kukushkin, A.K., Kuznetsova, S.A., and Dolgopolova, A.A., Physical and chemical investigations of photosynthesis mechanisms and regulation in higher plants. 2. Induction of luminescence in the studies of photosynthesis regulation, Ross. Khim. Zh. (Zh. Ross. Khim. Ob-va im. D.I. Mendeleeva)., 2007, vol. 51, no. 1, pp. 76–87.
    54.Vanlerberghe, G.C. and McIntosh, L., Alternative oxidase: from gene to function, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, pp. 703–734.CrossRef PubMed
    55.Rasmusson, A.G., Geisler, D.A., and Møller, I.M., The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria, Mitochondrion., 2008, vol. 8, pp. 47–60.CrossRef PubMed
    56.Vercesi, A.E., Borecký, J., Maia, I.G., Arruda, P., Cuccovia, I.M., and Chaimovich, H., Plant uncoupling mitochondrial proteins, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 383–404.CrossRef PubMed
    57.Rasmusson, A.G. and Escobar, M., Light and diurnal regulation of plant respiratory gene expression, Physiol. Plant., 2007, vol. 129, pp. 57–67.CrossRef
    58.Okada, S. and Brennicke, A., Transcript levels in plant mitochondria show a tight homeostasis during day and night, Mol. Gen. Genomics., 2006, vol. 276, pp. 71–78. lCrossRef
    59.Svensson, A.S. and Rasmusson, A.G., Light-dependent gene expression for proteins in the respiratory chain of potato leaves, Plant J., 2001, vol. 28, pp. 73–82.CrossRef PubMed
    60.Escobar, M.A., Franklin, K.A., Svensson, A.S., Salter, M.G., Whitelam, G.C., and Rasmusson, A.G., Light regulation of the Arabidopsis respiratory chain. Multiple discrete photoreceptor responses contribute to induction of type II NAD(P)H dehydrogenase genes, Plant Physiol.., 2004, vol. 136, pp. 2710–2721.PubMedCentral CrossRef PubMed
    61.Curi, G.C., Welchen, E., Chan, R.L., and Gonzalez, D.H., Nuclear and mitochondrial genes encoding cytochrome c oxidase subunits respond differently to the same metabolic factors, Plant Physiol. Biochem., 2003, vol. 41, pp. 689–693.CrossRef
    62.Dutilleul, C., Driscoll, S., Cornic, G., de Paepe, R., Foyer, C.H., and Noctor, G., Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients, Plant Physiol., 2003, vol. 131, pp. 264–275.PubMedCentral CrossRef PubMed
    63.Juszczuk, I.M., Flexas, J., Szal, B., Dbrowska, Z., Ribas-Carbo, M., and Rychter, A.M., Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration and energy status of MSC16 cucumber (Cucumis sativus) mutant, Physiol. Plant., 2007, vol. 121, pp. 527–541.CrossRef
    64.Welchen, E., Chan, R.L., and Gonzalez, D.H., Metabolic regulation of genes encoding cytochrome c and cytochrome c oxidase subunit Vb in Arabidopsis, Plant Cell Environ., 2002, vol. 25, pp. 1605–1615.CrossRef
    65.Garmash, E.V., Malyshev, R.V., Shelyakin, M.A., and Golovko, T.K., Activities of respiratory pathways and the pool of nonstructural carbohydrates in greening leaves of spring wheat seedlings, Russ. J. Plant Physiol., 2014, vol. 61, pp. 160–168.CrossRef
    66.Shugaev, A.G., Alternative cyanide-resistant oxidase in plant mitochondria: structure, regulation of activity, and presumable physiological role, Russ. J. Plant Physiol., 1999, vol. 46, pp. 262–273.
    67.Millenaar, F.F. and Lambers, H., The alternative oxidase: in vivo regulation and function, Plant Biol., 2003, vol. 5, pp. 2–15.CrossRef
    68.Garmash, E.V., Role of alternative respiratory pathway in plants: some metabolic and physiological aspects, Handbook of Plant and Crop Physiology, Pessarakli, M., Ed., Boca Raton, FL: CRC Press, 2014, pp. 139–156.
    69.Polidoros, A.N., Mylona, P.V., and ArnholdtSchmitt, B., AOX gene structure, transcript variation and expression in plants, Physiol. Plant., 2009, vol. 137, pp. 342–353.CrossRef PubMed
    70.Siedow, J.N. and Umbach, A.L., The mitochondrial cyanide-resistant oxidase: structural conservation amid regulatory diversity, Biochim. Biophys. Acta., 2000, vol. 1459, pp. 432–439.CrossRef PubMed
    71.Maxwell, D.P., Wang, Y., and McIntosh, L., The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells, Proc. Natl. Acad. Sci. USA., 1999, vol. 96, pp. 8271–8276.PubMedCentral CrossRef PubMed
    72.Yoshida, K., Watanabe, C., Kato, Y., Sakamoto, W., and Noguchi, K., Influence of chloroplastic photo-oxidative stress on mitochondrial alternative oxidase capacity and respiratory properties: a case study with Arabidopsis yellow variegated 2, Plant Cell Physiol., 2008, vol. 49, pp. 592–603.CrossRef PubMed
    73.Florez-Sarasa, I., Ostaszewska, M., Galle, A., Flexas, J., Rychter, A.M., and Ribas-Carbo, M., Changes of alternative oxidase activity, capacity and protein content in leaves of Cucumis sativus wild type and MSC16 mutant grown under different light intensities, Physiol. Plant., 2009, vol. 137, pp. 419–426.CrossRef PubMed
    74.Finnegan, P.M., Whelan, J., Millar, A.H., Zhang, Q., Smith, M.K., Wiskich, J.T., and Day, D.A., Differential expression of the multigene family encoding the soybean mitochondrial alternative oxidase, Plant Physiol., 1997, vol. 114, pp. 455–466.PubMedCentral CrossRef PubMed
    75.Takumi, S., Tomioka, M., Eto, K., Naydenov, N., and Nakamura, C., Characterization of two non-homoeologous nuclear genes encoding mitochondrial alternative oxidase in common wheat, Genes Cenet. Syst., 2002, vol. 77, pp. 81–88.CrossRef
    76.Noguchi, K. and Terashima, I., Different regulation of leaf respiration between Spinacia oleracea, a sun species, and Alocasia odora, a shade species, Physiol. Plant., 1997, vol. 101, pp. 1–7.CrossRef
    77.Noguchi, K., Go, C.S., Terashima, I., Ueda, S., and Yoshinari, T., Activities of the cyanide-resistant respiratory pathway in leaves of sun and shade species, Aust. J. Plant Physiol., 2001, vol. 28, pp. 27–35.
    78.Golovko, T.K. and Pystina, N.V., The alternative respiration pathway in leaves of Rhodiola rosea and Ajuga reptans: presumable physiological role, Russ. J. Plant Physiol., 2001, vol. 48, pp. 733–741.CrossRef
    79.Vanlerberghe, G.C., Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants, Int. J. Mol. Sci., 2013, vol. 14, pp. 6805–6847. http://​wwwncbinlmnihgov​/​pubmed/​23531539PubMedCentral CrossRef PubMed
    80.Noguchi, K., Taylor, N.L., Millar, A.H., Lambers, H., and Day, D.A., Response of mitochondria to light intensity in the leaves of sun and shade species, Plant Cell Environ., 2005, vol. 28, pp. 760–771.CrossRef
    81.Igamberdiev, A.U., Bykova, N.V., and Gardeström, P., Involvement of cyanide-resistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants, FEBS Lett., 1997, vol. 412, pp. 265–269.CrossRef PubMed
    82.Michalecka, A.M., Svensson, Å.S., Johansson, F.I., Agius, S.C., Johanson, U., Brennicke, A., Binder, S., and Rasmusson, A.G., Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light, Plant Physiol., 2003, vol. 133, pp. 642–652.PubMedCentral CrossRef PubMed
    83.Elhafez, D., Murcha, M.W., Clifton, R., Soole, K.L., Day, D.A., and Whelan, J., Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression, Plant Cell Physiol., 2006, vol. 47, pp. 43–54.CrossRef PubMed
    84.Escobar, M.A. and Rasmusson, A.G., Photocontrol of respiratory type II NAD(P)H dehydrogenase genes: cryptochrome, but not hy5, is a critical component of light signaling, in Photosynthesis: Fundamental Aspects to Global Perspectives, Van der Est, A. and Bruce, D., Eds., Lawrence, KS: Allen Press, 2005, pp. 909–911.
    85.Krauss, S., Zhang, C.Y., and Lowell, B.B., The mitochondrial uncoupling-protein homologues, Nat. Rev. Mol. Cell Biol., 2005, vol. 6, pp. 248–261.CrossRef PubMed
    86.Palou, A., Pico, C., Bonet, M.L., and Oliver, P., The uncoupling protein, thermogenin, Int. J. Biochem. Cell Biol., 1998, vol. 30, pp. 7–11.CrossRef PubMed
    87.Skulachev, V.P., Anion carriers in fatty acid-mediated physiological uncoupling, J. Bioenerg. Biomembr., 1999, vol. 31, pp. 431–445.CrossRef PubMed
    88.Onda, Y., Kato, Y., Abe, Y., Ito, T., Morohashi, M., Ito, Y., Ishikawa, M., Matsukawa, K., Kakizaki, Y., Koiwa, H., and Ito, K., Functional coexpression of the mitochondrial alternative oxidase and uncoupling protein underlies thermoregulation in the thermogenic florets of skunk cabbage, Plant Physiol., 2008, vol. 146, pp. 636–645.PubMedCentral CrossRef PubMed
    89.Grabelnych, O.I., Pivovarova, N.Yu., Pobezhimova, T.P., Kolesnichenko, A.V., and Voinikov, V.K., The role of free fatty acids in mitochondrial energetic metabolism in winter wheat seedlings, Russ. J. Plant Physiol., 2009, vol. 56, pp. 332–342.CrossRef
    90.Voinikov, V.K., Energeticheskaya i informatsionnaya sistemy rastitel’nykh kletok pri gipotermii (Energy and Information Systems of Plant Cells in Hypothermia), Novosibirsk: Nauka, 2013.
    91.Smith, A.M.O., Ratcliffe, R.G., and Sweetlove, L.J., Activation and function of mitochondrial uncoupling protein in plants, J. Biol. Chem., 2004, vol. 279, pp. 51944–51952.CrossRef PubMed
    92.Yoshida, K. and Noguchi, K., Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves, Plant Cell Physiol., 2009, vol. 50, pp. 1449–1462.CrossRef PubMed
    93.Sweetlove, L.J., Lytovchenko, A., Morgan, M., NunesNesi, A., Taylor, N.L., Baxter, C.J., Eickmeier, I., and Fernie, A.R., Mitochondrial uncoupling protein is required for efficient photosynthesis, Proc. Natl. Acad. Sci. USA., 2006, vol. 103, pp. 19587–19592.PubMedCentral CrossRef PubMed
    94.Garmash, E.V., Grabelnych, O.I., Velegzhaninov, I.O., Borovik, O.A., Kokovkina, E.V., Dalke, I.V., Voinikov, V.K., and Golovko, T.K., Light regulation of nonphosphorylating pathways of mitochondrial respiration in greening cells of wheat leaves, Mater. Godichn. Sobr. OFR i Mezhd. Nauch. Konf. i Shkoly Molod. Uch. “Fiziologiya rastenii–teoreticheskaya osnova innovatsionnykh agroi fitobiotekhnologii” (Proc. Annu. Meet. Soc. Plant Physiologists and Int. Sci. Conf. Young Scientists “Plant Physiology?Theoretical Basics for Innovative Agroand Phytobiotechnology”), Kaliningrad, 2014, pp. 42–44.
  • 作者单位:E. V. Garmash (1)

    1. Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of Sciences, ul. Kommunisticheskaya 28, Syktyvkar, 167982, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
    Plant Sciences
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3407
文摘
Current notions on respiration of photosynthesizing cells are reviewed. Over the past three decades, the modern methods based on isotope techniques and reverse and molecular genetics provided convincing evidence that mitochondrial respiration is functional in the light and contributes to the creation of optimal conditions for photosynthesis and for protection of cells from photodegradation. Novel data are presented on the substrates that are used for respiration in the light. Individual respiration steps are considered in the context of their possible role in photosynthesizing cells. The mechanisms and carriers mediating the export of reducing equivalents from chloroplasts for their subsequent oxidation in the mitochondrial electron-transport chain are discussed. The regulation of nonphosphorylating (unrelated to energy generation) electron transport pathways mediated by alternative oxidase and alternative type II NADPH-dehydrogenases, as well as the role of uncoupling proteins in plant mitochondria, are analyzed. These components were shown to play a significant role in NAD(P)H oxidation for maintaining the redox balance in mitochondria and whole green cells. A generalized scheme of biochemical interactions between organelles—chloroplasts, mitochondria, and peroxisomes—is presented. The directions for future research are outlined.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700