Integrated Parallel 2D-Leap-Frog Algorithm for Noisy Three Image Photometric Stereo
详细信息    查看全文
  • 关键词:Noisy Photometric Stereo ; 2D ; Leap ; Frog ; Parallelization
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9555
  • 期:1
  • 页码:73-87
  • 全文大小:3,618 KB
  • 参考文献:1.Horn, B.K.P.: Robot Vis. McGraw-Hill, New York (1986)
    2.Luneburg, R.K.: Mathematical Theory of Optics. University of California Press, Berkeley and Los Angeles (1964)
    3.Kozera, R.: Uniqueness in shape from shading revisited. J. Math. Imag. Vision 7, 123–138 (1997)CrossRef MathSciNet
    4.Horn, B.K.P., Brooks, M.J.: Shape from Shading. MIT Press, Cambridge (1989)
    5.Kozera, R.: On complete integrals and uniqueness in shape from shading. Appl. Math. Comput. 73(1), 1–37 (1995)CrossRef MathSciNet MATH
    6.Brooks, M.J., Chojnacki, W., Kozera, R.: Impossible and ambiguous shading patterns. Int. J. Comput. Vis. 7(2), 119–126 (1992)CrossRef
    7.Oliensis, J.: Uniqueness in shape from shading. Int. J. Comput. Vis. 6(2), 75–104 (1991)CrossRef
    8.Brooks, M.J., Chojnacki, W., Kozera, R.: Circularly symmetrical eikonal equations and non-uniqueness in computer vision. J. Math. Anal. Appl. 165(1), 192–215 (1992)CrossRef MathSciNet MATH
    9.Brooks, M.J., Chojnacki, W.: Direct computation of shape-from-shading. In: 12th International Conference on Pattern Recognition, Jerusalem, Israel, pp. 114–119. IEEE Computer Society Press, Los Alamitos, CA (1994)
    10.Kozera, R.: Existence and uniqueness in photometric stereo. Appl. Math. Comput. 44(1), 1–104 (1991)CrossRef MathSciNet MATH
    11.Kozera, R.: On shape recovery from two shading patterns. Int. J. Pattern Recognit. Artif. Intell. 6(4), 673–698 (1992)CrossRef
    12.Onn, R., Bruckstein, A.: Uniqueness in shape from shading. Int. J. Comput. Vis. 5(1), 105–113 (1990)CrossRef
    13.Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)CrossRef
    14.Horn, B.K.P.: Height and gradient from shading. Int. J. Comput. Vis. 5(1), 37–75 (1990)CrossRef
    15.Wei, T., Klette, R.: On depth recovery from gradient vector field. In: Bhattacharaya, B.B., et al. (eds.) Algorithms, Architectures and Information Systems Security, pp. 765–797. World Scientific Publishing Co., Pte. Ltd., Singapore (2009)
    16.Simchony, T., Chellappa, R., Shao, M.: Direct analytical methods for solving poisson equations in computer vision problems. IEEE Trans. Pattern. Recognit. Mach. Intell. 12(5), 435–446 (1990)CrossRef
    17.Frankot, R.T., Chellappa, R.: A method of enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern. Recognit. Mach. Intell. 10(4), 439–451 (1988)CrossRef MATH
    18.Noakes, L., Kozera, R.: The 2-D Leap-Frog, noise and digitization. In: Bertrand, G., et al. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 352–364. Springer, Heidelberg (2001)CrossRef
    19.Noakes, L., Kozera, R.: The Lawn-Mowing Algorithm for noisy gradient vector fields. In: Latecki, L.J. (ed.) Vision Geometry VIII. Proceedings SPIE, vol. 3811, pp. 305–316. Denver, CO, USA (1999)
    20.Noakes, L., Kozera, R.: The 2-D Leap-Frog Algorithm for optimal surface reconstruction. In: Latecki, L.J. (ed.) Vision Geometry VIII. Proceedings SPIE, vol. 3811, pp. 317–328. Denver, CO, USA (1999)
    21.Kozera, R., Okulicka-Dłużewska, F.: Conjugate gradient in noisy photometric stereo. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 338–346. Springer, Heidelberg (2014)
    22.Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)CrossRef MATH
    23.Cameron, T., Kozera, R., Datta, A.: A parallel Leap-Frog Algorithm for 3-source photometric stereo. In: Wojciechowski, K., et al. (eds.) ICCVG 2004, pp. 95–102. Springer, Dordrecht (2006)
    24.Hackbush, W.: Iterative Solution of Large Sparse Systems of Equations. Springer, New York (1994)CrossRef
    25.van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2009)MATH
    26.Noakes, L., Kozera, R.: Nonlinearities and noise reduction in 3-source photometric stereo. J. Math. Imag. Vis. 18(3), 119–127 (2003)CrossRef MathSciNet MATH
    27.Noakes, L., Kozera, R.: Denoising images: non-linear Leap-Frog for shape and light-source recovery. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 419–436. Springer, Heidelberg (2003)CrossRef
    28.Kozera, R., Tchórzewski, J.: Outlier removal in 2D Leap Frog Algorithm. In: Cortesi, A., Chaki, N., Saeed, K., Wierzchoń, S. (eds.) CISIM 2012. LNCS, vol. 7564, pp. 146–157. Springer, Heidelberg (2012)CrossRef
    29.Arce, G.R.: Non-Linear Signal Processing: A Statistical Approach. Wiley, New Jersey (2005)
    30.Noakes, L.: A global algorithm for geodesics. J. Math. Austral. Soc. Ser. A 64, 37–50 (1999)
    31.Castelán, M., Hancock, E.R.: Imposing integrability in geometric shape-from-shading. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 196–203. Springer, Heidelberg (2003)CrossRef
    32.Hurt, N.E.: Mathematical methods in shape-from-shading: a review of recent results. Acta Appl. Math. 23, 163–188 (1991)CrossRef MathSciNet MATH
    33.Wöhler, C.: 3D Computer Vision: Efficient Methods and Applications. Springer-Verlag, Berlin Heideberg (2009)CrossRef
  • 作者单位:Ryszard Kozera (15)
    Felicja Okulicka-Dłużewska (16)
    Lyle Noakes (17)

    15. Faculty of Applied Mathematics and Informatics, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776, Warsaw, Poland
    16. Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa Street 75, 00-662, Warsaw, Poland
    17. School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
  • 丛书名:Image and Video Technology ᾿PSIVT 2015 Workshops
  • ISBN:978-3-319-30285-0
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
文摘
In this paper a feasible computational scheme for reconstructing a smooth Lambertian surface \(S_L\) from noisy images is discussed. The noiseless case of Photometric Stereo relies on solving image irradiance equations. In fact, the entire shape recovery consists of gradient computation and gradient integration. The presence of added noise re-transforms the latter (depending on the adopted model) into a high-dimensional linear or non-linear optimization, solvable e.g. by a 2D-Leap-Frog. This algorithm resorts to the overlapping local image snapshot optimizations to reduce a large dimension of the original optimization task. Several practical steps to improve the feasibility of 2D-Leap-Frog are integrated in this work. Namely, an initial guess is obtained from a linear version of denoising Photometric Stereo. A non-integrable vector field estimating the normals to \(S_L\) is rectified first to yield an initial guess \(S_{L_a}\approx S_L\) for a non-linear 2D-Leap-Frog. Computationally, the integrability of non-integrable normals is enforced here by Conjugate Gradient which avoids numerous inversions of the large size matrices. In sequel, \(S_{L_a}\) is fed through to the adjusted version of non-linear 2D-Leap-Frog. Such setting not only improves the recovery of \(S_L\) (from \(S_{L_a}\approx S_L\) to \(\hat{S}_{L_a}\approx S_L\)) but also it removes potential outliers (upon enforcing a continuity on \(\hat{S}_{L_a}\)) occurring in the previous version of 2D-Leap-Frog. In addition, a speed-up of shape reconstruction is achieved with parallelization of non-linear 2D-Leap-Frog applied to the modified cost function. The experiments are performed on images with different resolutions and varying number of kernels. Finally, the comparison tests between standard 2D-Leap-Frog (either linear or non-linear) and its improved outlier-free version are presented illustrating differences in the quality of the reconstructed surface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700