A study of common scorpionfly (Mecoptera: Panorpidae) visual systems reveals the expression of a single opsin
详细信息    查看全文
  • 作者:Katie F. Manwaring ; Michael F. Whiting ; Edward Wilcox…
  • 关键词:Boreidae ; Transcriptome ; Phototransduction ; Photopigment ; Rhodopsin
  • 刊名:Organisms Diversity & Evolution
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 页码:201-209
  • 全文大小:965 KB
  • 参考文献:Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195–201.CrossRef PubMed
    Beutel, R. G., Friedrich, F., & Whiting, M. F. (2008). Head morphology of Caurinus (Boreidae, Mecoptera) and its phylogenetic implications. Arthropod Structure & Development, 37(5), 418–433.CrossRef
    Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., & Bordoli, L. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research. doi:10.​1093/​nar/​gku340 .PubMed PubMedCentral
    Blankenberg, D., Kuster, G. V., Coraor, N. Ananda, G. Lazarus, R. Mangan, M. Nekrutenko A., & Taylor J. (2010). Galaxy: a web-based genome analysis tool for experimentalists. Current Protocols in Molecular Biology, Chapter 19: Unit 19.10, 1–21.
    Briscoe, A. D. (2000). Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. Journal of Molecular Evolution, 51(2), 110.PubMed
    Briscoe, A. D., & Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology, 46, 471.CrossRef PubMed
    Briscoe, A. D., Bybee, S. M., Bernard, G. D., Yuan, F., Sison-Mangus, M. P., Reed, R. D., Warren, A. D., Llorente-Bousquets, J., & Chiao, C.-C. (2010). Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3628.CrossRef PubMed PubMedCentral
    Burkhardt, D. & de la Motte I. (1972). Electrophysiological studies on the eyes of Diptera, Mecoptera and Hymenoptera. Information Processing in the Visual Systems of Arthropods: 147–153.
    Burrows, M. (2011). Jumping mechanisms and performance of snow fleas (Mecoptera, Boreidae). Journal of Experimental Biology, 214(14), 2362–2374.CrossRef PubMed
    Bybee, S. M., Johnson, K. K., Gering, E. J., Whiting, M. F., & Crandall, K. A. (2012). All the better to see you with: a review of odonate color vision with transcriptomic insight into the odonate eye. Organisms Diversity & Evolution, 12(3), 241.CrossRef
    Byers, G. W. (1955). A new species of Boreus (Mecoptera: Boreidae) from Colorado. Occasional Papers of the Museum of Zoology: University of Michigan, 562, 1–4.
    Byers, G. W. (1969). Ecological and geographical relationships of southern Appalachian Mecoptera (Insecta). The Distributional History of the Southern Appalachians. Part I: Invertebrates. Reseach Division Monograph, 1, 265–276.
    Byers, G. W. (1993). Autumnal Mecoptera of southeastern United States. The University of Kansas Science Bulletin, 55(2), 57–96.
    Byers, G. W. (2011). Additions to the Mecoptera of Mexico. Journal of the Kansas Entomological Society, 84(1), 1–11.CrossRef
    Byers, G. W., & Thornhill, R. (1983). Biology of the Mecoptera. Annual Review of Entomology, 28(1), 203–228.CrossRef
    de Serres, M. (1815). Memoir upon the compound and smooth or simple eyes of insects, and on the manner in which these two species of eyes concur in vision. The New England Journal of Medicine, Surgery and Collateral Branches of Science, 4(2), 141–151.CrossRef
    Doering, T. F., Skellern, M., Watts, N., & Cook, S. M. (2012). Colour choice behaviour in the pollen beetle Meligethes aeneus (Coleoptera: Nitidulidae). Physiological Entomology, 37(4), 360–378.CrossRef
    Engqvist, L., & Sauer, K. P. (2002). Amorous scorpionflies: causes and consequences of the long pairing prelude of Panorpa cognata. Animal Behaviour, 63, 667.CrossRef
    Esben-Petersen, P. (1921). Mecoptera. Coll Selys Longchamps Bruxelles, 5(2), 1.
    Everett, A., Tong, X., Briscoe, A. D., & Monteiro, A. (2012). Phenotypic plasticity in opsin expression in a butterfly compound eye complements sex role reversal. BMC Evolutionary Biology, 12, 232.CrossRef PubMed PubMedCentral
    Ferris, G. F., & Rees, B. E. (1939). The morphology of Panorpa nuptialis Gerstaecker (Mecoptera: Panorpidae). Microentomology Stanford University, 4, 79.
    Friedrich, F., Pohl, H., Beckmann, F., & Beutel, R. G. (2013). The head of Merope tuber (Meropeidae) and the phylogeny of Mecoptera (Hexapoda). Athropod Structure & Development, 42(1), 69–88.CrossRef
    Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y., Blankenberg, D., Albert, I., & Taylor, J. (2005). Galaxy: a platform for interactive large-scale genome analysis. Genome Research, 15(10), 1451–1455.CrossRef PubMed PubMedCentral
    Goecks, J., Nekrutenko, A., & Taylor, J. (2010). Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology, 11(8), R86.CrossRef PubMed PubMedCentral
    Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., & Zeng, Q. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652.CrossRef PubMed PubMedCentral
    Issiki, S. (1933). Morphological studies on the Panorpidae of Japan and adjoining countries and comparison with American and European forms. Japanese Journal of Zoology, 4, 315.
    Jennings, D. T., & Sferra, N. J. (2002). An arthropod predator-prey-kleptoparasite association. Northeastern Naturalist, 9(3), 325.CrossRef
    Karalius, V., & Buda, V. (2007). Colour vision in currant clearwing moth (Synanthedon tipuliformis) (Lepidoptera: Sesiidae). Acta Zoologica Lituanica, 17(3), 198.CrossRef
    Kashiyama, K., Seki, T., Numata, H., & Goto, S. G. (2009). Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda. Molecular Biology and Evolution, 26(2), 299–311.CrossRef PubMed
    Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. (outlines version 7). Molecular Biology and Evolution, 30, 772–780.CrossRef PubMed PubMedCentral
    Kiefer, F., Arnold, K., Künzli, M., Bordoli, L., & Schwede, T. (2009). The SWISS-MODEL Repository and associated resources. Nucleic Acids Research, 37(suppl 1), D387–D392.CrossRef PubMed PubMedCentral
    Kofler, R., Orozco-terWengel, P., De Maio, N., Pandey, R. V., Nolte, V., Futschik, A., Kosiol, C., & Schlotterer, C. (2011). PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS ONE, 6(1), 15925.CrossRef
    Krzeminski, W., & Soszynska-Maj, A. (2012). A new genus and species of scorpionfly (Mecoptera) from Baltic amber, with an unusually developed postnotal organ. Systematic Biology, 37(1), 223–228.
    Margulies, M., Egholm, M., Altman, W., Attiya, S., Bader, J., Bemben, L., Berka, J., Braverman, M., Chen, Y., Chen, Z., Dewell, S., Du, L., Fierro, J., Gomes, X., Godwin, B., He, W., Helgesen, S., Ho, C., Ho, C., Irzyk, G., Jando, S., Alenquer, M., Jarvie, T., Jirage, K., Kim, J., Knight, J., Lanza, J., Leamon, J., Lefkowitz, S., Lei, M., Li, J., Lohman, K., Lu, H., Makhijani, V., McDade, K., Mckenna, M., Myers, E., Nickerson, E., Nobile, J., Plant, R., Puc, B., Ronan, M., Roth, G., Sarkis, G., Simons, J., Simpson, J., Srinivasan, M., Tartaro, K., Tomasz, A., Vogt, K., Volkmer, G., Wang, S., Wang, Y., Weiner, M., Yu, P., Begley, R., & Rothberg, J. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380.PubMed PubMedCentral
    Misof, B., Erpenbeck, D., & Sauer, K. P. (2000). Mitochondrial gene fragments suggest paraphyly of the genus Panorpa (Mecoptera, Panorpidae). Molecular Phylogenetics and Evolution, 17(1), 76–84.CrossRef PubMed
    Ogawa, Y., Awata, H., Wakakuwa, M., Kinoshita, M., Stavenga, D. G., & Arikawa, K. (2012). Coexpression of three middle wavelength-absorbing visual pigments in sexually dimorphic photoreceptors of the butterfly Colias erate. Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology, 198(12), 857–867.CrossRef
    Penny, N. D., & Byers, G. W. (1979). A check-list of the Mecoptera of the world. Acta Amazonica, 9(2), 365–388.
    Porter, M. L., Blasic, J. R., Bok, M. J., Cameron, E. G., Pringle, T., Cronin, T. W., & Robinson, P. R. (2011). Shedding new light on opsin evolution. Proceedings of the Royal Socity B: Biological Sciences. doi:10.​1098/​rspb.​2011.​1819 .
    Rivera, A. S., Pankey, M. S., Plachetzki, D. C., Villacorta, C., Syme, A. E., Serb, J. M., Omilian, A. R., & Oakley, T. H. (2010). Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach. BMC Evolutionary Biology, 10, 123.CrossRef PubMed PubMedCentral
    Sison-Mangus, M. P., Bernard, G. D., Lampel, J., & Briscoe, A. D. (2006). Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. Journal of Experimental Biology, 209(16), 3079.CrossRef PubMed
    Snodgrass, R. (1935). Principles of Insect Morphology (1st ed.). New York and London: McGraw-Hill Book Company.
    Spaethe, J., & Briscoe, A. D. (2004). Early duplication and functional diversification of the opsin gene family in insects. Molecular Biology and Evolution, 21(8), 1583.CrossRef PubMed
    Speiser, D. I., Pankey, M. S., Zaharoff, A. K., Battelle, B. A., Bracken-Grissom, H. D., Breinholt, J. W., Bybee, S. M., Cronin, T. W., Garm, A., Lindgren, A. R., Patel, N. H., Porter, M. L., Protas, M. E., Rivera, A. S., Serb, J. M., Zigler, K. S., Crandall, K. A., & Oakley, T. H. (2014). Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms. Bioinformatics, 15(350), 1471–2105.
    Stamatakis, A. P., Meier, H., & Ludwig, T. (2008). RAxML: A parallel program for phylogenetic tree inference. See http://​sco.​h-its.​org/​exelixis/​software.​html
    Taylor, J. S., & Raes, J. (2004). Duplication and divergence: the evolution of new genes and old ideas. Annual Review of Genetics, 38, 615.CrossRef PubMed
    Taylor, S. D., de la Cruz, K. D., Porter, M. L., & Whiting, M. F. (2005). Characterization of the long-wavelength opsin from Mecoptera and Siphonaptera: does a flea see? Molecular Biology and Evolution, 22(5), 1165–1174.CrossRef PubMed
    Thornhill, R. (1980a). Competition and coexistence among Panorpa scorpionflies (Mecoptera—Panorpidae). Ecological Monographs, 50(2), 179.CrossRef
    Thornhill, R. (1980b). Rape in Panorpa scorpionflies and a general rape hypothesis. Animal Behaviour, 28, 52.CrossRef
    Thornhill, R. (1981). Panorpa (Mecoptera, Panorpidae) scorpionflies—systems for understanding resource-defense polygyny and alternative male reproductive efforts. Annual Review of Ecology and Systematics, 12, 355.CrossRef
    Whiting, M. F. (2002). Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta, 31(1), 93–104.CrossRef
    Whiting, M. F., Carpenter, J. C., Wheeler, Q. D., & Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology, 46(1), 1–68.PubMed
    Zhong, W., & Hua, B. Z. (2013). Mating behaviour and copulatory mechanism in the scorpionfly Neopanorpa longiprocessa (Mecoptera: Panorpidae). Plos One, 8(9), e74781.CrossRef PubMed PubMedCentral
  • 作者单位:Katie F. Manwaring (1)
    Michael F. Whiting (1)
    Edward Wilcox (1)
    Seth M. Bybee (1)

    1. Department of Biology, Brigham Young University, 4102 LSB, Provo, UT, 84602, USA
  • 刊物主题:Biodiversity; Evolutionary Biology; Developmental Biology; Animal Systematics/Taxonomy/Biogeography; Plant Systematics/Taxonomy/Biogeography;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1618-1077
文摘
Knowledge of insect color vision and the genes that support color vision has been growing recently. Yet, research on some groups is limited (e.g., Mecoptera). Common scorpionflies (Panorpidae) are highly visual insects with many intriguing behaviors. We hypothesized that the family Panorpidae employs a complex color vision system and predicted that multiple opsin classes are expressed in the lineage. Transcriptomes were generated from the eye tissues for two species of Panorpidae (Panorpa acuminata and P. nebulosa) and one species of Boreidae (Boreus coloradensis). Opsins isolated from the transcriptomes were combined in a phylogenetic analysis with opsin sequences from other insect orders (e.g., those that are sensitive to ultraviolet, blue, and long wavelength light as part of the photopigment). A single long-wavelength opsin sequence was recovered from the panorpid species, while all three opsin classes (ultraviolet, blue, and long-wavelength) were recovered from the boreid. Among insects, this represents a potential case of monochromy due to a loss of opsin gene expression in the blue and ultraviolet portions of the visible light spectrum.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700