Bacterial photosensory proteins: Regulatory functions and optogenetic applications
详细信息    查看全文
  • 作者:G. Ya. Fraikin ; M. G. Strakhovskaya ; N. S. Belenikina ; A. B. Rubin
  • 关键词:bacterial phytochromes ; LOV ; and BLUF ; photoreceptors ; signal transduction ; regulation ; optogenetics
  • 刊名:Microbiology
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:84
  • 期:4
  • 页码:461-472
  • 全文大小:218 KB
  • 参考文献:1.Chen, M. and Chory, J., Phytochrome signalling mechanisms and the control of plant development, Trends Cell Biol., 2011, vol. 21, no. 11, pp. 664鈥?71.PubMed Central PubMed View Article
    2.Liu, H., Liu, B., Zhao, C., Pepper, M., and Lin, C., The action mechanisms of plant cryptochromes, Trends Plant Sci., 2011, vol. 16, no. 12, pp. 684鈥?91.PubMed Central PubMed View Article
    3.Christie, J.M., Phototropin blue-light receptors, Ann. Rev. Plant Biol., 2007, vol. 5, pp. 21鈥?5.View Article
    4.Heijde, M. and Ulm, R., UV-B photoreceptor-mediated signaling in plants, Trends Plant Sci., 2012, vol. 17, no. 4, pp. 230鈥?37.PubMed View Article
    5.Karniol, B., Wagner, J.R., Walker, J.M., and Vierstra, R.D., Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors, Biochem. J., 2005, vol. 392, no. 1, pp. 103鈥?16.PubMed Central PubMed View Article
    6.Montgomery, B.L., Sensing the light: photoreceptive systems and signal transduction in cyanobacteria, Mol. Microbiol., 2007, vol. 64, no. 1, pp. 16鈥?7.PubMed View Article
    7.Giraud, E. and Vermeglio, A., Bacteriophytochromes in anoxygenic photosynthetic bacteria, Photosynth. Res., 2008, vol. 97, no. 2, pp. 141鈥?53.PubMed View Article
    8.Rottwinkel, G., Oberpichler, I., and Lamparter, T., Bathy phytochromes in rhizobial soil bacteria, J. Bacteriol., 2010, vol. 192, no. 19, pp. 5124鈥?133.PubMed Central PubMed View Article
    9.Froehlich, A.C., Noh, B., Vierstra, R.D., Loros, J., and Dunlap, J.C., Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa, Eukaryot. Cell, 2005, vol. 4, no. 12, pp. 2140鈥?152.PubMed Central PubMed View Article
    10.Bayram, O., Braus, G.H., Fischer, R., and Rodrigues-Romero, J., Spotlight on Aspergillus nidulans photosensory systems, Fungal Genet. Biol., 2010, vol. 47, pp. 900鈥?08.PubMed View Article
    11.Losi, A. and Gartner, W., Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors, Photochem. Photobiol., 2011, vol. 87, no. 3, pp. 491鈥?10.PubMed View Article
    12.Losi, A. and Gartner, W., Bacterial bilin- and flavin-binding photoreceptors, Photochem. Photobiol. Sci., 2008, vol. 7, no. 10, pp. 1168鈥?178.PubMed View Article
    13.Rubin, L.B., Shvinka, Yu.E., and Fraikin, G.Ya., On plant photoregulatory systems, S-Kh. Biol., 1973, vol. 8, no. 1, pp. 135鈥?46.
    14.Fraikin, G.Ya., Pospelov, M.E., and Rubin, L.B., Phytochrome system of the yeast Candida guilliermondii and recovery from ultraviolet injury, J. Gen. Microbiol., 1976, vol. 95, no. 1, pp. 27鈥?0.PubMed View Article
    15.Rockwell, N.C., Su, Y.-S., and Lagarias, J.C., Phytochrome structure and signaling mechanisms, Ann. Rev. Plant Biol., 2006, vol. 57, pp. 837鈥?58.View Article
    16.Wagner, J.R., Zhang, J., Brunzelle, J.S., Vierstra, R.D., and Forest, K.T., High-resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution, J. Biol. Chem., 2007, vol. 282, no. 16, pp. 12298鈥?2309.PubMed View Article
    17.Yang, X., Kuk, J., and Moffat, K., Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction, Proc. Nat. Acad. Sci. U. S. A., 2008, vol. 105, no. 38, pp. 14715鈥?4720.View Article
    18.Rockwell, N.C., Shang, L., Martin, S.S., and Lagarias, J.C., Distinct classes of red/far-red photochemistry within the phytochrome superfamily, Proc. Nat. Acad. Sci. U. S. A., 2009, vol. 106, no. 15, pp. 6123鈥?127.View Article
    19.Scheerer, P., Michael, N., Park, J.H., Nagano, S., Choe, H.W., Inomata, K., Borucki, B., Krauss, N., and Lamparter, T., Light-induced conformational changes of the chromophore and the protein in phytochromes: bacterial phytochromes as model systems, ChemPhysChem., 2010, vol. 11, no. 6, pp. 1090鈥?105.PubMed View Article
    20.Toh, K.C., Stojkovic, E.A., Rupenyan, A.B., van Stokkum, I.H.M., Salumbides, M., Groot, M.-L., Moffat, K., and Kennis, J.T.M., Primary reactions of bacteriophytochrome observed with ultrafast midinfrared spectroscopy, J. Phys. Chem. A., 2011, vol. 115, no. 12, pp. 3778鈥?786.PubMed View Article
    21.Bae, G. and Choi, G., Decoding of light signals by plant phytochromes and their interacting proteins, Ann. Rev. Plant Biol., 2008, vol. 59, pp. 281鈥?11.View Article
    22.Kehoe, D.M. and Gutu, A., Responding to color: the regulation of complementary chromatic adaptation, Ann. Rev. Plant Biol., 2006, vol. 57, pp. 127鈥?50.View Article
    23.Montgomery, B.L. and Lagarias, J.C., Phytochrome ancestry: sensors of bilins and light, Trends Plant Sci., 2002, vol. 7, no. 8, pp. 357鈥?66.PubMed View Article
    24.Tarutina, M., Ryjenkov, D.A., and Gomelsky, M. An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messendger c-di-GMP, J. Biol. Chem., 2006, vol. 281, no. 46, pp. 34751鈥?4758.PubMed View Article
    25.van der Horst, M.A., Key, J., and Hellingwerf, K.J., Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too, Trends Microbiol., 2007, vol. 15, no. 12, pp. 554鈥?62.PubMed View Article
    26.Fraikin, G.Ya., Verkhoturov, V.N., and Rubin, L.B., Detection of a phytochrome system in Candida guilliermondii yeasts, Vestn. Mosk. Univ. Ser. Biol. Pochv, 1973, no. 5, pp. 54鈥?6.
    27.Fraikin, G.Ya. and Pinyaskina, E.V., New type of photoreactivation of UVB-inactivated cells, Photodermatol. Photoimmunol. Photomed., 1995, vol. 11, no. 1, pp. 23鈥?4.
    28.Fraikin, G.Ya., Belenikina, N.S., Pinyaskina, E.V., and Rubin, A.B., New photo-induced effects of reactivation and protection of yeast cells under lethal UVB radiation, Biol. Bull., 2013, vol. 40, no. 6, pp. 562鈥?66.View Article
    29.Fraikin, G.Y., Strakhovskaya, M.G., and Rubin, A.B., Light-induced processes of cell protection against photodamage, Biochemistry (Moscow). 2000, vol. 65, no. 6, pp. 737鈥?46.PubMed
    30.Yuan, H., Dragnea, V., Wu, Q., Gardner, K.H., and Bauer, C.E., Mutational and structure studies of the PixD BLUF output signal that affects light-regulated interaction with PixE, Biochemistry, 2011, vol. 50, no. 29, pp. 6365鈥?375.PubMed Central PubMed View Article
    31.Bonetti, C., Mathes, T., van Stokkum, I.H.M., Mullen, K.M., Groot, M.-L., van Grondelle, R., Hegemann, P., and Kennis, J.T.M., Hydrogen-bond switching among flavin and amino acid side chains in the BLUF photoreceptor observed by ultrafast infrared spectroscopy, Biophys. J., 2008, vol. 95, no. 10, pp. 4790鈥?802.PubMed Central PubMed View Article
    32.Khrenova, M.G., Nemukhin, A.V., and Domratcheva, T., Photoinduced electron transfer facilitates tautomerization of the conserved signaling glutamine side chain in BLUF protein light sensors, J. Phys. Chem. B., 2013, vol. 117, no. 8, pp. 2369鈥?377.PubMed View Article
    33.Masuda, S. Light detection and signal transduction in the BLUF photoreceptors, Plant Cell Physiol., 2013, vol. 54, no. 2, pp. 171鈥?79.PubMed View Article
    34.Barends, T.R.M., Hartmann, E., Griese, J.J., Beitlich, T., Kirienko, N.V., Ryjenkov, D.A., Reinstein, J., Shoeman, R.L., Gomelsky, M., and Schlichting, I., Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase, Nature, 2009, vol. 459, no. 7249, pp. 1015鈥?018.PubMed View Article
    35.Winkler, A., Udvarhelyi, A., Hartmann, E., Reinstein, J., Menzel, A., Shoeman, R.L., and Schlichting, I., Characterization of elements involved in allosteric light regulation of phosphodiesterase activity by comparison of different functional BlrP1 states, J. Mol. Biol., 2014, vol. 426, no. 4, pp. 853鈥?68.PubMed Central PubMed View Article
    36.Stierl, M., Stumpf, P., Udvari, D., Gueta, R., Hagedorn, R., Losi, A., Gartner, W., Petereit, L., Efetova, M., Schwarzel, M., Oertner, T.G., Nagel, G., and Hegemann, P., Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa, J. Biol. Chem., 2011, vol. 286, no. 2, pp. 1181鈥?188.PubMed Central PubMed View Article
    37.Ryu, M.-H., Moskvin, O.V., Siltberg-Liberies, J., and Gomelsky, M. Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications, J. Biol. Chem., 2010, vol. 285, no. 53, pp. 41501鈥?1508.PubMed Central PubMed View Article
    38.Tanaka, K., Nakasone, Y., Okajima, K., Ikeuchi, M., Tokutomi, S., and Terazima, M., Time-resolved tracking of interprotein signal transduction: Synechocystis PixD-PixE complex as a sensor of light intensity, J. Amer. Chem. Soc., 2012, vol. 134, no. 20, pp. 8336鈥?339.View Article
    39.Ren, S., Sawada, M., Hasegawa, K., Hayakawa, Y., Ohta, H., and Masuda, S., A PixD-PapB chimeric protein reveals the function of the BLUF domain C-terminal 伪-helices for light-signal transduction, Plant Cell Physiol., 2012, vol. 53, no. 9, pp. 1638鈥?647.PubMed View Article
    40.Tschowri, N., Linderberg, S., and Hengge, R., Molecular function and potential evolution of the biofilm-modulating blue light-signaling pathway of Escherichia coli, Mol. Microbiol., 2012, vol. 85, no. 5, pp. 893鈥?06.PubMed Central PubMed View Article
    41.Winkler, A., Heintz, U., Lindner, R., Reinstein, J., Shoeman, R.L., and Schlichting, I., A ternary AppA-PpsR-DNA complex mediates light-regulation of photosynthesis-related gene expression, Nat. Struct. Mol. Biol., 2013, vol. 20, no. 7, pp. 859鈥?67.PubMed Central PubMed View Article
    42.Losi, A., Flavin-based blue-light photosensors: a photobiophysics update, Photochem. Photobiol., 2007, vol. 83, no. 9, pp. 1283鈥?300.PubMed View Article
    43.Herrou, J. and Crosson, S., Function, structure, and mechanism in bacterial photosensory LOV proteins, Nat. Rev. Microbiol., 2011, vol. 9, no. 10, pp. 713鈥?23.PubMed Central PubMed View Article
    44.Losi, A. and Gartner, W., The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors, Ann. Rev. Plant Biol., 2012, vol. 63, pp. 49鈥?2.View Article
    45.Chen, C.-H. and Loros, J.J., Neurospora sees the light, Commun. Integrat. Biol., 2009, vol. 2, no. 5, pp. 448鈥?51.View Article
    46.Malzahn, E., Ciprianidis, S., Kaldi, K., Schafmeier, T., and Brunner, M., Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains, Cell, 2010, vol. 142, no. 5, pp. 762鈥?72.PubMed View Article
    47.Chen, C.H., Ringelberg, C.S., Gross, R.H., Dunlap, J.C., and Loros, J.J., Genome-wide analysis of light-inducible responses reveals hierarchical light signaling in Neurospora, EMBO J. 2009, vol. 28, no. 8, pp. 1029鈥?042.PubMed Central PubMed View Article
    48.Chen, C.H., DeMay, B.S., Gladfelter, A.S., Dunlap, J.C., and Loros, J.J., Physical interaction between VIVID and white collar complex regulates phoroadaptation in Neurospora, Proc. Nat. Acad. Sci. U. S. A., 2010, vol. 107, no. 38, pp. 16715鈥?6720.View Article
    49.Halavaty, A. and Moffat, K., N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin1 from Avena sativa, Biochemistry, 2007, vol. 46, no. 49, pp. 14001鈥?4009.PubMed View Article
    50.Zoltowski, B.D. and Crane, B.R., Light activation of the LOV protein VIVID generates a rapidly exchanging dimer, Biochemistry, 2008, vol. 47, no. 27, pp. 7012鈥?019.PubMed Central PubMed View Article
    51.Hunt, S., Thompson, S., Elvin, M., and Heintzen, C., VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora, Proc. Nat. Acad. Sci. U. S. A., 2010, vol. 107, no. 38, pp. 16709鈥?6714.View Article
    52.Purcell, E.B. and Crosson, S., Photoregulation in prokaryotes, Curr. Opin. Microbiol., 2008, vol. 11, no. 2, pp. 168鈥?78.PubMed View Article
    53.Cao, Z., Buttani, V., Losi, A., and Gartner, W., A blue light inducible two component signal transduction system in the plant pathogen Pseudomonas syringae pv. tomato, Biophys. J., 2008, vol. 94, no. 3, pp. 897鈥?05.PubMed Central PubMed View Article
    54.Purcell, E.B., McDonald, C.A., Palfey, B.A., and Crosson, S., An analysis of the solution structure and signaling mechanism of LovK, a sensor histidine kinase integrating light and redox signals, Biochemistry, 2010, vol. 49, no. 31, pp. 6761鈥?770.PubMed Central PubMed View Article
    55.Cao, Z., Livoti, E., Losi, A., and Gartner, W., A blue light-inducible phosphodiesterase activity in the cyanobacterium Synechococcus elongatus, Photochem. Photobiol., 2010, vol. 86, no. 5, pp. 606鈥?11.PubMed View Article
    56.Buttani, V., Gartner, W., and Losi, A., NTP-binding properties of the blue-light receptor YtvA and effects of the E105L mutation, Eur. Biophys. J., 2007, vol. 36, no. 7, pp. 831鈥?39.PubMed View Article
    57.Avila-Perez, M., Vreede, J., Tang, Y., Bende, O., Losi, A., Gartner, W., and Hellingwerf, K., In vivo mutational analysis of YtvA from Bacillus subtilis: mechanism of light activation of the general stress response, J. Biol. Chem., 2009, vol. 284, no. 37, pp. 24958鈥?4964.PubMed Central PubMed View Article
    58.Tang, Y., Cao, Z., Livoti, E., Krauss, U., Jaeger, K.-E., Gartner, W., and Losi, A., Interdomain signaling in the blue-light sensing and GTP-binding protein YtvA: a mutagenesis study uncovering the importance of specific protein sites, Photochem. Photobiol. Sci., 2010, vol. 9, no. 1, pp. 47鈥?6.PubMed View Article
    59.Nakasone, Y. and Hellingwerf, K.J. On the binding of BODIPY-GTP by the photosensory protein YtvA from the common soil bacterium Bacillus subtilis, Photochem. Photobiol., 2011, vol. 87, no. 3, pp. 542鈥?47.PubMed View Article
    60.Jurk, M., Dorn, M., Kekhney, A., Svergun, D., Gartner, W., and Schmieder, P., The switch that does not flip: the blue-light receptor YtvA from Bacillus subtilis adopts an elongated dimer conformation independent of the activation state as revealed by combined AUC and SAXS study, J. Mol. Biol., 2010, vol. 403, no. 1, pp. 78鈥?7.PubMed View Article
    61.Moglich, A. and Moffat, K., Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA, J. Mol. Biol., 2007, vol. 373, no. 1, pp. 112鈥?26.PubMed Central PubMed View Article
    62.Nash, A.I., McNulty, R., Shillito, M.E., Swartz, T.E., Bogomolni, R.A., Luecke, H., and Gardner, K.H., Structural basis of photosensitivity in bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein, Proc. Nat. Acad. Sci. U. S. A., 2011, vol. 108, no. 23, pp. 9449鈥?454.View Article
    63.Nash, A.I., Ko, W.H., Harper, S.M., and Gardner, K.H., A conserved glutamine plays a central role in LOV domain signal transduction and its duration, Biochemistry, 2008, vol. 47, no. 52, pp. 13842鈥?3849.PubMed Central PubMed View Article
    64.Pathak, G.P., Vrana, J.D., and Tucker, C.L., Optogenetic control of cell function using engineered photoreceptors, Biol. Cell, 2013, vol. 105, no. 2, pp. 59鈥?2.PubMed Central PubMed View Article
    65.Moglich, A. and Moffat, K., Engineered photoreceptors as novel optogenetic tools, Photochem. Photobiol. Sci., 2010, vol. 9, no. 10, pp. 1286鈥?300.PubMed View Article
    66.Zoltowski, B.D. and Gardner, K.H., Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions, Biochemistry, 2011, vol. 50, no. 1, pp. 4鈥?6.PubMed Central PubMed View Article
    67.Christie, J.M., Gawthorne, J., Young, G., Fraser, N.J., and Roe, A.J., LOV to BLUF: flavoproteins contributions to the optogenetic toolkit, Mol. Plant., 2012, vol. 5, no. 3, pp. 533鈥?44.PubMed View Article
    68.Krauss, U., Drepper, T., and Jaeger, K.E., Enlightened enzymes: strategies to create novel photoresponsive proteins, Chem. Eur. J., 2011, vol. 17, no. 9, pp. 2552鈥?560.PubMed View Article
    69.Lee, J., Natarajan, M., Nashine, V.C., Socolich, M., Vo, T., Russ, W.R., Benkovic, S., and Ranganathan, R., Surface sites for engineering allosteric control in proteins, Science, 2008, vol. 322, no. 5900, pp. 438鈥?42.PubMed Central PubMed View Article
    70.Krauss, U., Lee, J., Benkovic, S.J., and Jaeger, K.E., LOVely enzymes-towards engineering light-controable biocatalysts, Microb. Biotech., 2010, vol. 3, no. 1, pp. 15鈥?3.View Article
    71.Wu, Y.I., Frey, D., Lungu, O.I., Jaehrig, A., Schlichting, I., Kuhlman, B., and Hahn, K.M., A genetically encoded photoactivatable Rac controls the motility of living cells, Nature, 2009, vol. 461, no. 7260, pp. 104鈥?08.PubMed Central PubMed View Article
    72.Wang, X., He, L., Wu, Y.I., Hahn, K.M., and Montell, D.J., Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo, Nat. Cell Biol., 2010, vol. 12, no. 6, pp. 591鈥?97.PubMed Central PubMed View Article
    73.Strickland, D., Moffat, K., and Sosnick, T.R., Light-activated DNA binding in a designed allosteric protein, Proc. Nat. Acad. Sci. U. S. A., 2008, vol. 105, no. 31, pp. 10709鈥?0714.View Article
    74.Strickland, D., Yao, X., Gawlak, G., Rosen, M.K., Gardner, K.H., and Sosnick, T.R., Rationally improving LOV domain-based photoswitches, Nat. Methods, 2010, vol. 7, no. 8, pp. 623鈥?26.PubMed Central PubMed View Article
    75.Moglich, A., Ayers, R.A., and Moffat, K. Design and signaling mechanism of light-regulated histidine kinases, J. Mol. Biol., 2009, vol. 385, no. 7, pp. 1433鈥?444.PubMed Central PubMed View Article
    76.Ohlendorf, R., Vidavski, R.R., Eldar, A., Moffat, K., and Moglich, A., From Dusk till Dawn: one-plasmid systems for light-regulated gene expression, J. Mol. Biol., 2012, vol. 416, no. 3, pp. 534鈥?42.PubMed View Article
    77.Tabor, J.J., Levskaya, A., and Voigt, C.A., Multichromatic control of gene expression in Escherichia coli, J. Mol. Biol., 2011, vol. 405, no. 2, pp. 315鈥?24.PubMed Central PubMed View Article
    78.Wang, X., Chen, X., and Yang, Y., Spatiotemporal control of gene expression by a light-switchable transgene system, Nat. Methods, 2012, vol. 9, no. 3, pp. 266鈥?69.PubMed View Article
    79.Pathak, G.P., Losi, A., and Gartner, W., Metagenome-based screening reveals worldwide distribution of LOV-domain proteins, Photochem. Photobiol., 2012, vol. 88, no. 1, pp. 107鈥?18.PubMed View Article
    80.Nagahama, T., Suzuki, T., Yoshikawa, S., and Iseki, M., Functional transplant of photoactivated adenylyl cyclase (PAC) into Amlysia sensory neurons, Neurosci. Res., 2007, vol. 59, no. 1, pp. 81鈥?8.PubMed View Article
    81.Weissenberger, S., Schultheis, C., Liewald, J.F., Erbguth, K., Nagal, G., and Gottschalk, A., PAC伪-an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans, J. Neurochem., 2011, vol. 116, no. 6, pp. 616鈥?25.PubMed View Article
  • 作者单位:G. Ya. Fraikin (1)
    M. G. Strakhovskaya (1) (2)
    N. S. Belenikina (1)
    A. B. Rubin (1)

    1. Lomonosov Moscow State University, Moscow, Russia
    2. Federal Scientific and Clinical Center for Specialized Medical Service and Medical Technologies, FMBA, Moscow, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Medical Microbiology
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3237
文摘
Three classes of light-sensory regulatory proteins, which have been identified in genomes of numerous phototrophic and nonphotosynthetic bacteria, are discussed: the UVA/blue light sensitive BLUF and LOV domain-containing proteins and red/far-red light-sensitive phytochromes. Light perception by these chromoproteins is provided by the flavin or bilin (in phytochromes) chromophores binding to their photosensory domains. Bacterial photoreceptors also contain a variety of effector domains with enzymatic DNA-binding and other functions, which compose modular light-switchable systems. In recent years, progress was achieved in uncovering the photoactivation mechanisms of such systems. Based on the chromophore phototransformation-induced changes in the domain structures, these mechanisms cause the biochemical signal cascades which can control the light-dependent physiological responses of the cells. The new information obtained is important not only for understanding the fundamental mechanisms of light perception and signal transduction by bacterial photosensory proteins but also as a basis for designing photo-switchable enzymes and light-inducible gene expression systems, which may be used in optogenetics, a new field in cell biology and biotechnology. The presents review is focused on the structural aspects of signal transduction in light-activated bacterial photoreceptors, on their regulatory functions, and on some recent advances in using LOV and BLUF photosensors in optogenetics for the regulation of biological processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700