Quantum yield measurements of light-induced H2 generation in a photosystem I鈥揫FeFe]-H2ase nanoconstruct
详细信息    查看全文
  • 作者:Amanda M. Applegate ; Carolyn E. Lubner ; Philipp Kn枚rzer…
  • 关键词:Biohydrogen ; Photosystem I ; Hydrogenase ; Photosystem I ; hydrogenase ; Bioconjugate ; Solar biofuels ; Molecular wire
  • 刊名:Photosynthesis Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:127
  • 期:1
  • 页码:5-11
  • 全文大小:802 KB
  • 参考文献:Antonkine ML, Maes EM, Czernuszewicz RS, Breitenstein C, Bill E, Falzone CJ, Balasubramanian R, Lubner C, Bryant DA, Golbeck JH (2007) Chemical rescue of a site-modified ligand to a [4Fe鈥?S] cluster in PsaC, a bacterial-like dicluster ferredoxin bound to photosystem I. Biochim Biophys Acta 1767(6):712鈥?24CrossRef PubMed
    D铆az A, Navarro F, Herv谩s M, Navarro JA, Ch谩vez S, Florencio FJ, De la Rosa MA (1994) Cloning and correct expression in E. coli of the petJ gene encoding cytochrome c6 from Synechocystis 6803. FEBS Lett 347(2鈥?):173鈥?77CrossRef PubMed
    Emerson R (1958) The quantum yield of photosynthesis. Annu Rev Plant Physiol 9(1):1鈥?4CrossRef
    Evans J (1987) The dependence of quantum yield on wavelength and growth irradiance. Funct Plant Biol 14(1):69鈥?9
    Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107(10):4273鈥?303CrossRef PubMed
    Frey M (2002) Hydrogenases: hydrogen-activating enzymes. ChemBioChem 3(2鈥?):153鈥?60CrossRef PubMed
    Golbeck JH (1993) Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci USA 90(5):1642鈥?646PubMedCentral CrossRef PubMed
    Golbeck JH, Parrett KG, Mehari T, Jones KL, Brand JJ (1988) Isolation of the intact photosystem-I reaction center core containing P700 and iron-sulfur center Fx. FEBS Lett 228(2):268鈥?72CrossRef
    Grimme RA, Lubner CE, Bryant DA, Golbeck JH (2008) Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2. J Am Chem Soc 130(20):6308鈥?309
    Grimme RA, Lubner CE, Golbeck JH (2009) Maximizing H2 production in photosystem I/dithiol molecular wire/platinum nanoparticle bioconjugates. Dalton Trans 45:10106鈥?0113
    Harbinson J, Genty B, Baker NR (1989) Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiol 90(3):1029鈥?034PubMedCentral CrossRef PubMed
    Heathcote P, Williams-Smith DL, Sihra CK, Evans MCW (1978) The role of the membrane-bound iron-sulphur centres A and B in the photosystem I reaction centre of spinach chloroplasts. Biochim Biophys Acta 503(2):333鈥?42
    Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J (2012) Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell Online 24(5):1921鈥?935CrossRef
    Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I a 2.5 A resolution. Nature 411:909鈥?17CrossRef PubMed
    Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192(2):261鈥?68CrossRef
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253鈥?78CrossRef PubMed
    Li N, Warren PV, Golbeck JH, Frank G, Zuber H, Bryant DA (1991a) Polypeptide composition of the photosystem I complex and the photosystem I core protein from Synechococcus sp. PCC 6301. Biochim Biophys Acta 1059(2):215鈥?25CrossRef PubMed
    Li N, Zhao JD, Warren PV, Warden JT, Bryant DA, Golbeck JH (1991b) PsaD is required for the stable binding of PsaC to the photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry 30(31):7863鈥?872CrossRef PubMed
    Lubner CE, Grimme R, Bryant DA, Golbeck JH (2009) Wiring photosystem I for direct solar hydrogen production. Biochemistry 49(3):404鈥?14CrossRef
    Lubner CE, Knorzer P, Silva PJN, Vincent KA, Happe T, Bryant DA, Golbeck JH (2010) Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry 49(48):10264鈥?0266CrossRef PubMed
    Lubner CE, Applegate AM, Knorzer P, Ganago A, Bryant DA, Happe T, Golbeck JH (2011a) Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc Natl Acad Sci USA 108(52):20988鈥?0991PubMedCentral CrossRef PubMed
    Lubner CE, Heinnickel M, Bryant DA, Golbeck JH (2011b) Wiring photosystem I for electron transfer to a tethered redox dye. Energy Environ Sci 4(7):2428鈥?434CrossRef
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440(7082):295CrossRef PubMed
    Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811(3):265鈥?22
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) Conversion of light to electricity by cis-X2bis(2,2鈥?bipyridyl-4,4鈥?dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115(14):6382鈥?390CrossRef
    Parrett KG, Mehari T, Warren PG, Golbeck JH (1989) Purification and properties of the intact P-700 and Fx-containing photosystem I core protein. Biochim Biophys Acta 973(2):324鈥?32CrossRef PubMed
    Vassiliev IR, Jung YS, Mamedov MD, Semenov A, Golbeck JH (1997) Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in Photosystem I. Biophys J 72(1):301鈥?15PubMedCentral CrossRef PubMed
    Zhao JD, Warren PV, Li N, Bryant DA, Golbeck JH (1990) Reconstitution of electron transport in photosystem I with PsaC and PsaD proteins expressed in Escherichia coli. FEBS Lett 276(1鈥?):175鈥?80CrossRef PubMed
  • 作者单位:Amanda M. Applegate (1)
    Carolyn E. Lubner (1) (3)
    Philipp Kn枚rzer (2)
    Thomas Happe (2)
    John H. Golbeck (1) (3)

    1. Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
    3. Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
    2. Lehrstuhl f眉r Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr-Universit盲t Bochum, 44780, Bochum, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5079
文摘
The quantum yield for light-induced H2 generation was measured for a previously optimized bio-hybrid cytochrome c 6-crosslinked PSIC13G鈥?,8-octanedithiol鈥揫FeFe]-H2aseC97G (PSI鈥揌2ase) nanoconstruct. The theoretical quantum yield for the PSI鈥揌2ase nanoconstruct is 0.50 molecules of H2 per photon absorbed, which equates to a requirement of two photons per H2 generated. Illumination of the PSI鈥揌2ase nanoconstruct with visible light between 400 and 700 nm resulted in an average quantum yield of 0.10鈥?.15 molecules of H2 per photon absorbed, which equates to a requirement of 6.7鈥?0 photons per H2 generated. A possible reason for the difference between the theoretical and experimental quantum yield is the occurrence of non-productive PSIC13G鈥?,8-octanedithiol鈥揚SIC13G (PSI鈥揚SI) conjugates, which would absorb light without generating H2. Assuming the thiol-Fe coupling is equally efficient at producing PSI鈥揚SI conjugates as well as in producing PSI鈥揌2ase nanoconstructs, the theoretical quantum yield would decrease to 0.167 molecules of H2 per photon absorbed, which equates to 6 photons per H2 generated. This value is close to the range of measured values in the current study. A strategy that purifies the PSI鈥揌2ase nanoconstructs from the unproductive PSI鈥揚SI conjugates or that incorporates different chemistries on the PSI and [FeFe]-H2ase enzyme sites could potentially allow the PSI鈥揌2ase nanoconstruct to approach the expected theoretical quantum yield for light-induced H2 generation. Keywords Biohydrogen Photosystem I Hydrogenase Photosystem I-hydrogenase Bioconjugate Solar biofuels Molecular wire

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700