Molecular characterization of an α-N-acetylgalactosaminidase from Clonorchis sinensis
详细信息    查看全文
  • 作者:Myoung-Ro Lee (12) blackcg96@gmail.com
    Won Gi Yoo (1) wongi.yoo@gmail.com
    Yu-Jung Kim (12) hoiyui25@gmail.com
    Dae-Won Kim (1) todaewon@gmail.com
    Shin-Hyeong Cho (1) jo4u@cdc.go.kr
    Kwang Yeon Hwang (3) chahong@korea.ac.kr
    Jung-Won Ju (12) junomics@gmail.com
    Won-Ja Lee (1) wonja@nih.go.kr
  • 刊名:Parasitology Research
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:111
  • 期:5
  • 页码:2149-2156
  • 全文大小:923.7 KB
  • 参考文献:1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410
    2. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340(4):783–795
    3. Bouvard V et al (2009) A review of human carcinogens—Part B: biological agents. Lancet Oncol 10(4):321–322
    4. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37(Database issue):D233–238
    5. Cho PY, Kim TI, Whang SM, Hong SJ (2008) Gene expression profile of Clonorchis sinensis metacercariae. Parasitol Res 102(2):277–282
    6. Choi D et al (2006) Cholangiocarcinoma and Clonorchis sinensis infection: a case–control study in Korea. J Hepatol 44(6):1066–1073
    7. Davies MN, Flower DR (2007) Harnessing bioinformatics to discover new vaccines. Drug Discov Today 12(9–10):389–395
    8. Dereeper A et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–469
    9. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016
    10. Fan Y et al (2011) Molecular cloning, expression, and immunolocalization of the NAD(+)-dependent glycerol 3-phosphate dehydrogenase (GPD) from Clonorchis sinensis. Parasitol Res 109(3):621–626
    11. Fujino T, Ishii Y (1986) Comparative histochemical studies of glycosidase activity in some helminths. J Helminthol 60(1):1–13
    12. Gan W et al (2010) Reverse vaccinology approach identify an Echinococcus granulosus tegumental membrane protein enolase as vaccine candidate. Parasitol Res 106(4):873–882
    13. Gasteiger E et al. (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607
    14. Harun-Or-Rashid M et al (2010) Purification and characterization of alpha-N-acetylgalactosaminidases I and II from the starfish Asterina amurensis. Biosci Biotechnol Biochem 74(2):256–261
    15. Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316(Pt 2):695–696
    16. Henrissat B, Teeri TT, Warren RA (1998) A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett 425(2):352–354
    17. Hocker B, Claren J, Sterner R (2004) Mimicking enzyme evolution by generating new (beta/alpha)8-barrels from (beta/alpha)4-half-barrels. Proc Natl Acad Sci U S A 101(47):16448–16453
    18. Irwin J et al (2004) Glycosidase activity in the excretory-secretory products of the liver fluke, Fasciola hepatica. Parasitology 129(04):465–472
    19. Lang D, Thoma R, Henn-Sax M, Sterner R, Wilmanns M (2000) Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. Science 289(5484):1546–1550
    20. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2
    21. Lee MR et al (2011) The identification of antigenic proteins: 14-3-3 protein and propionyl-CoA carboxylase in Clonorchis sinensis. Mol Biochem Parasitol 182(1–2):1–6
    22. Lun ZR et al (2005) Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect Dis 5(1):31–41
    23. Min XJ, Butler G, Storms R, Tsang A (2005) OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res 33(Web Server issue):W677–680
    24. Naumoff DG (2005) GH97 is a new family of glycoside hydrolases, which is related to the alpha-galactosidase superfamily. BMC Genomics 6:112
    25. Oliveira MF et al (2000) Haemozoin in Schistosoma mansoni. Mol Biochem Parasitol 111(1):217–221
    26. Pearl F et al (2005) The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res 33(Database issue):D247–251
    27. Peterson ME, Chen F, Saven JG, Roos DS, Babbitt PC, Sali A (2009) Evolutionary constraints on structural similarity in orthologs and paralogs. Protein Sci 18(6):1306–1315
    28. Quevillon E et al (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(Web Server issue):W116–120
    29. Rappuoli R (2001) Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19(17–19):2688–2691
    30. Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33(4):530–541
    31. Sterner R, Hocker B (2005) Catalytic versatility, stability, and evolution of the (beta/alpha)8-barrel enzyme fold. Chem Rev 105(11):4038–4055
    32. Wu Y, Egerton G, Underwood AP, Sakuda S, Bianco AE (2001) Expression and secretion of a larval-specific chitinase (family 18 glycosyl hydrolase) by the infective stages of the parasitic nematode, Onchocerca volvulus. J Biol Chem 276(45):42557–42564
    33. Yoo WG et al (2011) Developmental transcriptomic features of the carcinogenic liver fluke, Clonorchis sinensis. PLoS Negl Trop Dis 5(6):1–14
  • 作者单位:1. Division of Malaria and Parasitic Diseases, Korea National Institute of Health, Osong, Republic of Korea2. Lab of Pathogenic Proteomics, Korea National Institute of Health, Osong, Republic of Korea3. Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
  • ISSN:1432-1955
文摘
The α-N-acetylgalactosaminidase (α-NAGAL) is an exoglycosidase that selectively cleaves terminal α-linked N-acetylgalactosamines from a variety of sugar chains. A complementary DNA (cDNA) clone encoding a novel Clonorchis sinensis α-NAGAL (Cs-α-NAGAL) was identified in the expressed sequence tags database of the adult C. sinensis liver fluke. The complete coding sequence was 1,308 bp long and encoded a 436-residue protein. The selected glycosidase was manually curated as α-NAGAL (EC 3.2.1.49) based on a composite bioinformatics analysis including a search for orthologues, comparative structure modeling, and the generation of a phylogenetic tree. One orthologue of Cs-α-NAGAL was the Rattus norvegicus α-NAGAL (accession number: NP_001012120) that does not exist in C. sinensis. Cs-α-NAGAL belongs to the GH27 family and the GH-D clan. A phylogenetic analysis revealed that the GH27 family of Cs-α-NAGAL was distinct from GH31 and GH36 within the GH-D clan. The putative 3D structure of Cs-α-NAGAL was built using SWISS-MODEL with a Gallus gallus α-NAGAL template (PDB code 1ktb chain A); this model demonstrated the superimposition of a TIM barrel fold (α/β) structure and substrate binding pocket. Cs-α-NAGAL transcripts were detected in the adult worm and egg cDNA libraries of C. sinensis but not in the metacercaria. Recombinant Cs-α-NAGAL (rCs-α-NAGAL) was expressed in Escherichia coli, and the purified rCs-α-NAGAL was recognized specifically by the C. sinensis-infected human sera. This is the first report of an α-NAGAL protein in the Trematode class, suggesting that it is a potential diagnostic or vaccine candidate with strong antigenicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700