The Deep Biosphere of the Subseafloor Igneous Crust
详细信息    查看全文
  • 关键词:Basalts ; Endoliths ; Microbial habitats ; Oceanic igneous crust ; The deep biosphere
  • 刊名:The Handbook of Environmental Chemistry
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:50
  • 期:1
  • 页码:143-166
  • 全文大小:871 KB
  • 参考文献:1.Edwards KJ, Bach W, McCollom T (2005) Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. Trends Microbiol 13:449–456CrossRef
    2.Schrenk MO, Huber JA, Edwards KJ (2009) Microbial provinces in the subseafloor. Ann Rev Mar Sci 2:279–304CrossRef
    3.Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422CrossRef
    4.Deming JW, Baross JA (1993) Deep-sea smokers – windows to a subsurface biosphere. Geochim Cosmochim Acta 57:3219–3230CrossRef
    5.Pedersen K, Ekendahl S (1990) Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb Ecol 20:37–52CrossRef
    6.Pedersen K (1993) The deep subterranean biosphere. Earth Sci Rev 34:243–260CrossRef
    7.Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413CrossRef
    8.Thorseth IH, Furnes H, Heldal M (1992) The importance of microbiological activity in the alteration of natural basaltic glass. Geochim Cosmochim Acta 56:845–850CrossRef
    9.Thorseth IH, Torsvik T, Furnes H, Muehlenbachs K (1995) Microbes play an important role in the alteration of oceanic crust. Chem Geol 126:137–146CrossRef
    10.Furnes H, Staudigel H (1999) Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet Sci Lett 166:97–103CrossRef
    11.Furnes H, McLoughlin N, Muehlenbachs K, Banerjee N, Staudigel H, Dilek Y, de Wit M, Van Kranendonk M, Schiffman P (2008) Oceanic pillow lavas and hyaloclastites as habitats for microbial life through time – a review. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between geological processes, microbial activities and evolution of life. Springer, Berlin, pp 1–68CrossRef
    12.Giovannoni SJ, Fisk MR, Mullins TD, Furnes H (1996) Genetic evidence for endolithic microbial life colonizing basaltic glass-seawater interfaces. Proc Ocean Drill Prog Sci Res 148:207–214
    13.Fisk MR, Giovannoni SJ, Thorseth IH (1998) Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281:978–980CrossRef
    14.Lepot K, Philippot P, Benzerara K, Wang G-Y (2009) Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt. Geobiology 7:393–402CrossRef
    15.Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc B 361:869–885CrossRef
    16.Grosch EG, McLoughlin N (2014) Reassessing the biogenicity of Earth’s oldest trace fossil with implications for biosignatures in the search for early life. Proc Natl Acad Sci U S A 111:8380–8385CrossRef
    17.Schumann G, Manz W, Reitner J, Lustrino M (2004) Ancient fungal life in North Pacific Eocene oceanic crust. Geomicrobiol J 21:241–246CrossRef
    18.Ivarsson M, Lindblom S, Broman C, Holm NG (2008) Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments. Geobiology 6:155–170CrossRef
    19.Ivarsson M, Lausmaa J, Lindblom S, Broman C, Holm NG (2008) Fossilized microorganisms from the Emperor Seamounts: implications for the search for a subsurface fossil record on Earth and Mars. Astrobiology 8:1139–1157CrossRef
    20.Ivarsson M, Bengtson S, Belivanova V, Stampanoni M, Marone F, Tehler A (2012) Fossilized fungi in subseafloor Eocene basalts. Geology 40:163–166CrossRef
    21.Peckmann J, Bach W, Behrens K, Reitner J (2008) Putative cryptoendolithic life in Devonian pillow basalt, Rheinisches Schiefergebirge, Germany. Geobiology 6:125–135CrossRef
    22.Eickmann B, Bach W, Kiel S, Reitner J, Peckmann J (2009) Evidence for cryptoendolithic life in Devonian pillow basalts of Variscan orogens, Germany. Palaeogeogr Palaeoclimatol Palaeoecol 283:120–125CrossRef
    23.Bengtson S, Ivarsson M, Astolfo A, Belivanova V, Broman C, Marone F et al (2014) Deep-biosphere consortium of fungi and prokaryotes in Eocene sub-seafloor basalts. Geobiology 12:489–496CrossRef
    24.Thorseth IH, Torsvik T, Torsvik V, Daae FL, Pedersen RB, Keldysh-98 Scientific Party (2001) Diversity of life in ocean floor basalt. Earth Planet Sci Lett 194:31–37CrossRef
    25.Lysnes K, Thorseth IH, Steinsbau BO, Øvreås L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol 50:213–230CrossRef
    26.Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, Staudigel H, Edwards KJ (2008) Abundance and diversity of microbial life in ocean crust. Nature 453:653–657CrossRef
    27.Mason OU, Nakagawa T, Rosner M, Van Nostrand JD, Zhou J, Maruyama A, Fisk MR, Giovannoni SJ (2010) First investigation of microbiology of the deepest layer of ocean crust. PLoS One 5(11), e15399CrossRef
    28.Orcutt BN, Bach W, Becker K, Fisher AT, Hentscher M, Toner BM et al (2010) Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J 5:692–703CrossRef
    29.Lever MA, Rouxel A, Alt JC, Shimizu N, Ono S, Coggon RM et al (2013) Evidence for microbial carbon and sulphur cycling in deeply buried ridge flank basalt. Science 339:1305–1308CrossRef
    30.Connell L, Barrett A, Templeton A, Staudigel H (2009) Fungal diversity associated with an active deep sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiol J 26:597–605CrossRef
    31.Bach W, Edwards KJ (2003) Iron and sulphide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta 67:3871–3887CrossRef
    32.Fisher AT, Becker K (2000) Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data. Nature 403:71–74CrossRef
    33.Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res 51:475–478
    34.Edwards KJ, Bach W, Rogers DR (2003) Geomicrobiology of the ocean crust: a role for chemoautotrophic Fe-bacteria. Biol Bull 204:180–185CrossRef
    35.Gao H, Obraztova A, Stewart N, Popa R, Fredrickson JK, Tiedje JM, Nealson KH, Zhou J (2006) Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int J Syst Evol Microbiol 56:1911–1916CrossRef
    36.Edwards KJ, Bach W, McCollom TM, Rogers DR (2004) Neutrophilic iron-oxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol J 21:393–404CrossRef
    37.Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol J 22:127–139CrossRef
    38.Dick GJ, Lee JY, Tebo BM (2006) Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes. Appl Environ Microbiol 72:3184–3190CrossRef
    39.Mason OU, Di Meo-Savoie CA, Van Nostrand JD, Zhou J, Fisk MR, Giovannoni SJ (2008) Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J 3:231–242CrossRef
    40.Pedersen K (2000) Exploration of the deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16CrossRef
    41.Holm NG, Neubeck A (2009) Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis. Geochem Trans 10:9CrossRef
    42.Stein C, Stein S (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J Geophys Res 99:3081–3099CrossRef
    43.Fisher AT, Davis EE, Hutnak M, Spiess V, Zühlsdorff L, Cherkaoui A, Christiansen L, Edwards K, Macdonald R, Villinger H, Mottl MJ, Wheat CG, Becker K (2003) Hydrothermal recharge and discharge across 50 km guided by seamounts on a young ridge flank. Nature 421:618–621CrossRef
    44.Bekins BA, Spivack AJ, Davis EE, Mayer LA (2007) Dissolution of biogenic ooze over basement edifices in the equatorial Pacific with implications for hydrothermal ventilation of oceanic crust. Geology 35:679–682CrossRef
    45.Fehn U, Cathles LM (1986) The influence of plate movement on the evolution of hydrothermal convection cells in the oceanic crust. Tectonophysics 125:289–312CrossRef
    46.Fisher AT, Von Herzen RP (2005) Models of hydrothermal circulation within 106 Ma seafloor: constraints on the vigor of fluid circulation and crustal properties, below the Madeira Abyssal Plain. Geochem Geophys Geosyst 6
    47.Hutnak M, Fisher AT, Harris R, Stein C, Wang K, Spinelli G, Schindler M, Villinger H, Silver E (2003) Large heat and fluid fluxes driven through mid-plate outcrops on ocean crust. Nat Geosci 1:611–614CrossRef
    48.McCarthy MD, Beaupré SR, Walker BD, Voparil I, Guilderson TP, Druffel ERM (2011) Chemosynthetic origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system. Nat Geosci 4:32–36CrossRef
    49.Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583CrossRef
    50.Sudek LA, Templeton AS, Tebo BM, Staudigel H (2010) Microbial ecology of Fe(hydr)oxide mats and basalts rock from Vailulu’u Seamount, American Samoa. Geomicrobiol J 26:581–596CrossRef
    51.Templeton AS, Knowles EJ, Eldridge KL, Arey BW, Dohnalkova AC, Webb SM, Bailey BE, Tebo BM, Staudigel H (2009) A seafloor microbial biome hosted within incipient ferromanganese crusts. Nat Geosci 2:872–876CrossRef
    52.Mason OU, Stingl U, Wilhelm LJ, Moeseneder MM, Di Meo-Savoie CA, Fisk MR, Giovannoni SJ (2007) The phylogeny of endolithic microbes associated with marine basalts. Environ Microbiol 9:2539–2550CrossRef
    53.Einen J, Thorseth IH, Øvreås L (2008) Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy. FEMS Microbiol Lett 282:182–187CrossRef
    54.Santelli CM, Edgcomb VP, Bach W, Edwards KJ (2009) The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration. Environ Microbiol 11:86–98CrossRef
    55.Fisk MR, Storrie-Lombardi MC, Douglas S, Popa R, McDonald G, Di Meo-Savoie C (2003) Evidence of biological activity in Hawaiian subsurface basalts. Geochem Geophys Geosyst 4:1103CrossRef
    56.Cowen JP, Giovannoni SJ, Kenig F, Johnson HP, Butterfield D, Rappé MS, Hutnak M, Lam P (2003) Fluids from aging ocean crust that support microbial life. Science 299:120–123CrossRef
    57.Nakagawa S, Inagaki F, Suzuki Y, Steinsbu BO, Lever MA, Takai K, Engelen B, Sako Y, Wheat CG, Horikoshi K, Integrated Ocean Drilling Program Expedition 301 Scientists (2006) Microbial community in black rust exposed to hot ridge flank crustal fluids. Appl Environ Microbiol 72:6789–6799CrossRef
    58.Furnes H, Staudigel H, Thorseth IH, Torsvik T, Muehlenbach K, Tumyr O (2001) Bioalteration of basaltic glass in the oceanic crust. Geochem Geophys Geosyst 2(8)
    59.Staudigel H, Furnes H, Banerjee NR, Dilek Y, Muehlenbachs K (2006) Microbes and volcanoes: a tale from the oceans, ophiolites, and greenstone belts. GSA Today 16:4–10CrossRef
    60.Staudigel H, Furnes H, McLoughlin N, Banerjee NR, Connell LB, Templeton A (2008) 3.5 billion years of glass bioalteration: volcanic rocks as a basis for microbial life? Earth Sci Rev 89:156–176CrossRef
    61.McLoughlin N, Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H (2009) Ichnotaxonomy of microbial trace fossils in volcanic glass. J Geol Soc Lond 166:159–169CrossRef
    62.McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26CrossRef
    63.Fisk M, McLoughlin N (2013) Atlas of alteration textures in volcanic glass from the ocean basins. Geosphere 9:317–341CrossRef
    64.Ross KA, Fisher RV (1986) Biogenic grooving on glass shards. Geology 14:571–573CrossRef
    65.Furnes H, Muehlenbachs K, Tumyr O, Torsvik T, Xenophontos C (2001) Biogenic alteration of volcanic glass from the Troodos ophiolite, Cyprus. J Geol Soc Lond 158:75–84CrossRef
    66.Staudigel H, Chastain RA, Yayanos A, Bourcier W (1995) Biologically mediated dissolution of glass. Chem Geol 126:147–154CrossRef
    67.Staudigel H, Yayanos A, Chastain R, Davies G, Verdurmen EAT, Sciffman P, Bourcier R, De Baar H (1998) Biologically mediated dissolution of volcanic glass in seawater. Earth Planet Sci Lett 164:233–244CrossRef
    68.Thorseth IH, Furnes H, Tumyr O (1995) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol 119:139–160CrossRef
    69.Mcloughlin N, Staudigel H, Furnes H, Eichmann B, Ivarsson M (2010) Mechanisms of microtunneling in rock substrates – distinguishing endolithic biosignatures from abiotic microtunnels. Geobiology 8:245–255CrossRef
    70.Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, de Wit M (2004) Early life recorded in Archean pillow lavas. Science 304:578–581CrossRef
    71.Staudigel H, Tebo B, Yayanos A, Furnes H, Kelley K, Plank T, Muehlenbachs K (2004) The oceanic crust as a bioreactor. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Cary SC (eds) The subseafloor biosphere at mid-ocean ridges, Geophysical monograph series 144. American Geophysical Union, Washington, pp 325–341CrossRef
    72.Al-Hanbali HS, Sowerby SJ, Holm NG (2001) Biogenicity of silicified microbes from a hydrothermal system: relevance to the search for evidence of life on earth and other planets. Earth Planet Sci Lett 191:213–218CrossRef
    73.Thorseth IH, Pedersen RB, Christie DM (2003) Microbial alteration of 0–30-Ma seafloor basaltic glasses from the Australian Antarctic Discordance. Earth Planet Sci Lett 215:237–247CrossRef
    74.Ivarsson M, Holm NG (2008) Microbial colonization of various habitable niches during alteration of oceanic crust. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between geological processes. Springer, Microbial Activities and Evolution of Life, pp 69–111
    75.Cavalazzi B, Westall F, Cady SL, Barbieri R, Foucher F (2011) Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, eastern north Atlantic Ocean. Astrobiology 11:619–632CrossRef
    76.Ivarsson M, Broman C, Holm NG (2011) Chromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms. Geochem Trans 12:5CrossRef
    77.Ivarsson M, Bengtson S, Skogby H, Belivanova V, Marone F (2013) Fungal colonies in open fractures of subseafloor basalt. Geo-Mar Lett 33:233–243CrossRef
    78.Ivarsson M (2012) The subseafloor basalts as fungal habitats. Biogeosciences 9:3625–3635CrossRef
    79.Ivarsson M, Gehör S, Holm NG (2008) Micro-scale variations of iron isotopes in fossilized microorganisms. Int J Astrobiol 7:93–106CrossRef
    80.Toporski JKW, Steele A, Westall F, Thomas-Keprta KL, McKay DS (2002) The simulated silicification of bacteria – new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. Astrobiology 2:1–26CrossRef
    81.Herbold DR, Glaser L (1975) Bacillus subtilis N-acetylmuramic acid L-alanine amidase. J Biol Chem 250:1676–1682
    82.Leduc M, Kasra R, Van Neijenoort J (1982) Induction and control of the autolytic system of Escherichia coli. J Bacteriol 152:26–34
    83.Ferris FG, Fyfe WS, Beveridge TJ (1988) Metallic ion binding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology 16:153–157CrossRef
    84.Lalonde K, Mucci A, Ouellet A, Gélinas Y (2012) Preservation of organic matter in sediments promoted by iron. Nature 483:198–200CrossRef
    85.Ivarsson M (2006) Advantages of doubly polished thin sections for the study of microfossils in volcanic rock. Geochem Trans 7:5CrossRef
    86.Ehrlich HL (1996) Geomicrobiology, third edition, revised and expanded. Dekker, New York
    87.Emerson D, Moyer CL (2002) Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol 68:3085–3093CrossRef
    88.Boyd TD, Scott SD (2001) Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: the example of Franklin Seamount, Western Woodlark Basin, Papua New Guinea. Geochem Trans 7
    89.Ivarsson M, Broman C, Gustafsson H, Holm NG (2015) Biogenic Mn-oxides in subseafloor basalts. PLoS One 10(6):e0128863CrossRef
    90.Ivarsson M, Broman C, Lindblom S, Holm NG (2009) Fluid inclusions as a tool to constrain the preservation conditions of sub-seafloor cryptoendoliths. Planet Space Sci 57:477–490CrossRef
    91.Ivarsson M, Kilias SP, Broman C, Naden J, Detsi K (2010) Fossilized microorganisms preserved as fluid inclusions in epithermal veins, Vani Mn-Ba deposit, Milos Island, Greece. Proc XIX CBGA Cong 100:297–307
    92.Benzerara K, Yoon T-H, Tyliszczak T, Constantz B, Spormann AM, Brown GE Jr (2004) Scanning Transmission X-ray Microscopy study of microbial calcification. Geobiology 2:249–259CrossRef
    93.Benzerara K, Menguy N, Banerjee NR, Tyliszczak T, Guyot F, Brown GE Jr (2007) Alteration of submarine basaltic glass from the Ontong Java Plateau: a STXM and TEM study. Earth Planet Sci Lett 260:187–200CrossRef
    94.Schopf JW, Kudryavtsev AB (2005) Three-dimensional Raman imagery of precambrian microscopic organisms. Geobiology 3:1–12CrossRef
    95.Donoghue PCJ, Bengtson S, Dong X-P, Gostling NJ, Huldtgren T, Cunningham JA, Yin C, Yue Z, Peng F, Stampanoni M (2006) Synchrotron X-ray tomographic microscopy of fossil embryos. Nature 442:680–683CrossRef
    96.Cary SC, Campbell BJ, DeLong EF (2004) Studying the deep subsurface biosphere: emerging technologies and applications. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Cary SC (eds) The subseafloor biosphere at mid-ocean ridges, Geophysical monograph series 144. American Geophysical Union, Washington, pp 383–399CrossRef
    97.Smith DC, Spivack AJ, Fisk MR, Haveman SA, Staudigel H (2000) Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol J 17:207–219CrossRef
    98.Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H, de Wit MJ (2006) Preservation of microbial biosignatures in 3.5 Ga pillow lavas from the Barberton Green stone Belt, South Africa. Earth Planet Sci Lett 241:707–722CrossRef
    99.Banerjee NR, Simonetti A, Furnes H, Staudigel H, Muehlenbachs K, Heaman L, Van Krankendonk MJ (2007) Direct dating of Archean microbial ichnofossils. Geology 35:487–490CrossRef
  • 作者单位:Magnus Ivarsson (5)
    N. G. Holm (6)
    A. Neubeck (6)

    5. Department of Palaeobiology, Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, Svante Arrhenius väg 9, Box 50007, 104 05, Stockholm, Sweden
    6. Department of Geological Sciences, Stockholm University, Svante Arrhenius väg 8, 106 91, Stockholm, Sweden
  • 丛书名:Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems
  • ISBN:978-3-319-41340-2
  • 刊物类别:Earth and Environmen
  • 刊物主题:Environment
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Geoecology and Natural Processes
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Berlin / Heidelberg
  • 卷排序:50
文摘
The igneous portion of the subseafloor crust is considered to be the largest potential microbial habitat on Earth; thus, it is somewhat of a paradox that our knowledge regarding its abundance, diversity and ecology is sparse, close to non-existent. This is mainly due to issues involved in sampling live species, and therefore much of our present knowledge of the deep biosphere is based on a fossil record. However, drilling and sampling techniques are constantly being developed to facilitate sampling of live microorganisms, and recent molecular studies show a positive progress towards better recovery and less contamination. Here we discuss the subseafloor igneous crust as a microbial habitat, its physical and geochemical prerequisites to support life and what type of life that could sustain in such an extreme environment. We also discuss what the fossil record, and the few successful molecular studies, tells us regarding what type of microorganisms exist in the deep subseafloor settings. It appears as if the igneous crust is more diverse than previously expected consisting of both prokaryotes and eukaryotes in close interplay with each other and their physical environment. As our knowledge increases so does the questions, and hopefully future technique development can provide us with an increased understanding of this deep, hidden world.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700