Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System
详细信息    查看全文
  • 作者:Varun Kumar ; Tiratha Raj Singh ; Alkesh Hada…
  • 关键词:Genotypes ; Hydroponics ; PCA ; Phytic acid ; P starvation
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:177
  • 期:3
  • 页码:689-699
  • 全文大小:1,787 KB
  • 参考文献:1.Raboy, V., Dickinson, D. B., & Below, F. E. (1984). Variation in seed total phosphorus, phytic acid, zinc, calcium, magnesium, and protein among lines of Glycine max and G. soja. Crop Science, 24, 431-34.CrossRef
    2.Shi, J., Wang, H., Schellin, K., Li, B., Faller, M., Stoop, J. M., Meeley, R. B., Ertl, D. S., Ranch, J. P., & Glassman, K. (2007). Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nature Biotechnology, 25, 930-37.CrossRef
    3.Kumar, V., Rani, A., Rajpal, S., Srivastava, G., Ramesh, A., & Joshi, O. P. (2005). Phytic acid in Indian soybean: genotypic variability and influence of growing location. Journal of the Science of Food and Agriculture, 85, 1523-526.CrossRef
    4.Corell, D. L. (1998). The role of phosphorus in the eutrophication of receiving waters: a review. Journal of Environmental Quality, 27, 261-66.CrossRef
    5.Cheryan, M., & Rackis, J. J. (1980). Phytic acid interactions in food systems. Critical Reviews in Food Science and Nutrition, 13, 297-35.CrossRef
    6.Beal, L., & Mehta, T. (1985). Zinc and phytate distribution in peas. Influence of heat treatment, germination, pH, substrate and phosphorus on pea phytate and phytase. Journal of Food Science, 50, 96-00.CrossRef
    7.Hitz, W. D., Carlson, T. J., Kerr, P. S., & Sebastian, S. A. (2002). Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiology, 128, 650-60.CrossRef
    8.Pen, J., Verwoerd, T. C., van Paridon, P. A., Beudeker, R. F., van den Elzen, P. J. M., Geerse, K., van der Klis, J. D., Versteegh, H. A. J., van Ooyen, A. J. J., & Hoekema, A. (1993). Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Nature Biotechnology, 11, 811-14.CrossRef
    9.Meis, S. J., Fehr, W. R., & Schnebly, S. R. (2003). Seed source effect on field emergence of soybean lines with reduced phytate and raffinose saccharides. Crop Science, 43, 1336-339.CrossRef
    10.Gaume, A., Machler, F., Leon, C. D., Narro, L., & Frossard, E. (2001). Low-P tolerance by maize (Zea mays L.) genotypes: significance of root growth, and organic acids and acid phosphatase root exudation. Plant and Soil, 228, 253-64.CrossRef
    11.Raboy, V., Hudson, S. J., & Dickson, D. B. (1985). Reduced phytic acid content does not have an adverse effect on germination of soybean seeds. Plant Physiology, 79, 323-25.CrossRef
    12.Biddinger, E. J., Liu, C., Joly, R. J., & Raghothama, K. G. (1998). Physiological and molecular responses of aeroponically grown tomato plants to phosphorus deficiency. Journal of the American Society for Horticultural Science, 123, 330-33.
    13.Conn, S. J., Hocking, B., Dayod, M., Xu, B., Athman, A., Henderson, S., Aukett, L., Conn, V., Shearer, M. K., Fuentes, S., Tyerman, S. D., & Gilliham, M. (2013). Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants. Plant Methods, 9, 4.CrossRef
    14.Kumar, A., Kumar, V., Lal, S. K., Jolly, M., & Sachdev, A. (2014). Influence of gamma rays and ethyl methane sulphonate (EMS) on the levels of phytic acid, raffinose family oligosaccharides and antioxidants in soybean seeds of different genotypes. Journal of Plant Biochemistry and Biotechnology, 24, 204-09.CrossRef
    15.Raboy, V., & Dickinson, D. B. (1993). Phytic acid levels in seeds of Glycine max and G. soja as influenced by phosphorus status. Crop Science, 33, 1300-305.CrossRef
    16.Li, H., Wang, X., Ma, Y., Wen, Z., Li, J., Zhang, H., Wu, Y., Lei, C., Wang, S., Wang, J., Geng, Z., Yang, C., Li, W., & Lu, W. (2013). Ecophysiological factors on phytic acid concentration in soybean seed. Crop Science, 53, 2195-201.CrossRef
    17.Mollers, C., Lickfett, T., Matthaus, B. and Velasco, L. (1999) Influence of P-fertilizer on phytic acid content in seeds of Brassica napus L. and development of a NIRS calibration. In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26-9 September. Edited by N. Wratten and P.A. Salisbury. pp. 26-9.
    18.Abdolzadeh, A., Wang, X., Veneklaas, E. J., & Lambers, H. (2010). Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species. Annals of Botany, 105, 365-74.CrossRef
    19.Jackson, C. A., Windes, J. M., Bregitzer, P., Obert, D., Price, W., & Brown, B. (2009). Phosphorus fertility effects on the expression of the low phytic acid barley phenotype. Crop Science, 49, 1800-806.CrossRef
    20.Asada, K., Tanaka, K., & Kasai, Z. (1969). Formation of phytic acid in cereal grains. Annals of the New York Academy of Sciences, 165, 801-14.
    21.Michael, B., Zink, F., & Lantzch, H. J. (1980). Effect of phosphate application on phytin-phosphorous and other phosphate fractions in developing wheat grains. Journal of Plant Nutrition and Soil Science., 143, 369-76. <
  • 作者单位:Varun Kumar (2)
    Tiratha Raj Singh (2)
    Alkesh Hada (1) (3)
    Monica Jolly (1)
    Andy Ganapathi (3)
    Archana Sachdev (1)

    2. Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
    1. Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110 012, India
    3. Department of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils. Keywords Genotypes Hydroponics PCA Phytic acid P starvation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700