The role of gene fusions in the evolution of metabolic pathways: the histidine biosynthesis case
详细信息    查看全文
  • 作者:Renato Fani (1)
    Matteo Brilli (1)
    Marco Fondi (1)
    Pietro Lió (2)
  • 刊名:BMC Evolutionary Biology
  • 出版年:2007
  • 出版时间:August 2007
  • 年:2007
  • 卷:7
  • 期:2-supp
  • 全文大小:829KB
  • 参考文献:1. Winkler ME: Biosynthesis of histidine. / Escherichia coli and Salmonella typhimurium: cellular and molecular biology / (Edited by: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Humbarger HD). Washington DC: ASM Press 1987, 1: 395-11.
    2. Alifano P, Fani R, Lió P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB: Histidine biosynthetic pathway and genes: structure, regulation and evolution. / Microbiol Rev 1996, 60: 44-9.
    3. Carlomagno MS, Chiarotti L, Alifano P, Nappo AG, Bruni CB: Structure of the Salmonella typhimurium and Escherichia coli K-2 histidine operons. / J Mol Biol 1988, 203: 585-06. CrossRef
    4. Shen C, Yang L, Miller SL, Oró J: Prebiotic synthesis of histidine. / J Mol Evol 1990, 31: 167-4. CrossRef
    5. Maurel MC, Ninio J: Catalysis by a prebiotic nucleotide analog of histidine. / Biochimie 1987, 69: 551-53. CrossRef
    6. Shen C, Mills T, Oró J: Prebiotic synthesis of histidyl–histidine. / J Mol Evol 1990, 31: 175-. CrossRef
    7. White DH, Erickson JC: Catalysis of peptide bond formation by histidyl–histidine in a fluctuating clay environment. / J Mol Evol 1980, 16: 279-90. CrossRef
    8. Shen C, Lazcano A, Oró J: The enhancement activities of histidyl–histidine in some prebiotic reactions. / J Mol Evol 1990, 31: 445-2. CrossRef
    9. Fani R, Lió P, Lazcano A: Molecular evolution of the histidine biosynthetic pathway. / J Mol Evol 1995, 41: 760-74. CrossRef
    10. Fani R, Mori E, Tamburini E, Lazcano A: Evolution of the structure and chromosomal distribution of histidine biosynthetic genes. / Orig Life Evol Biosph 1998, 28: 555-70. CrossRef
    11. Brilli M, Fani R: Molecular evolution of hisB genes. / J Mol Evol 2004, 58: 225-37. CrossRef
    12. Brilli M, Fani R: Origin and evolution of eucaryal HIS7 genes: from metabolons to bifunctional proteins? / Gene 2004, 339: 149-60. CrossRef
    13. Fani R, Brilli M, Lió P: The origin and evolution of operons: the piecewise building of the proteobacterial histidine operon. / J Mol Evol 2005, 60: 378-90. CrossRef
    14. Fani R: Gene duplication and gene loading. / Microbial evolution: gene establishment, survival and exchange / (Edited by: Miller RV, Day MJ). Washington DC: ASM Press 2004, 67-1.
    15. Fani R, Brilli M, Lió P: Inference from proteobacterial operons shows piecewise organization: a reply to price et Al. / J Mol Evol 2006, 63: 577-80. CrossRef
    16. Jensen R: Evolution of metabolic pathways in enteric bacteria In Escherichia coli and Salmonella typhimurium . / Escherichia coli and Salmonella typhimurium: cellular and molecular biology / (Edited by: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Humbarger HD). Washington DC: ASM Press 1987, 1: 2649-662.
    17. Yanai I, Wolf YI, Koonin EV: Evolution of gene fusions: horizontal transfer versus independent events. / Genome Biol 2002, 3: research0024-
    18. Fani R, Lió P, Chiarelli I, Bazzicalupo M: The evolution of the histidine biosynthetic genes in prokaryotes: a common ancestor for the hisA and hisF genes. / J Mol Evol 1994, 38: 489-95. CrossRef
    19. Lang D, Thoma R, Henn–Sax M, Sterner R, Wilmanns M: Structural evidence for evolution of the β / α barrel scaffold by gene duplication and fusion. / Science 2000, 289: 1546-550. CrossRef
    20. Kneidinger B, Marolda C, Graninger M, Zamyatina A, McArthur F, Kosma P, Valvano MA, Messner P: Biosynthesis pathway of ADP–L–glycero–beta–D–manno–heptose in Escherichia coli . / J Bacteriol 2002, 184: 363-. CrossRef
    21. Kneidinger B, Graninger M, Puchberger M, Kosma P, Messner P: Biosynthesis of nucleotide–activated D–glycero–D–manno–heptose. / J Biol Chem 2001, 276: 20935-4. CrossRef
    22. Klem TJ, Davisson VJ: Imidazole glycerol phosphate synthase: the glutamine amidotransferase in histidine biosynthesis. / Biochemistry 1993, 32: 5177-186. CrossRef
    23. Kuenzler M, Balmelli T, Egli CM, Paravicini G, Braus GH: Cloning, primary structure, and regulation of the HIS7 gene encoding a bifunctional glutamine amidotransferase: cyclase from Saccharomyces cerevisiae . / J Bacteriol 1993, 175: 5548-558.
    24. Altschul SF, Madden TL, Schaffer AA, Zhalg J, Zhalg Z, Miller W, Lipman DJ: Gapped BLAST and PSI–BLAST: a new generation of protein database search programs. / Nucl Acids Res 1997, 25: 3389-402. CrossRef
    25. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position–specific gap penalties and weight matrix choice. / Nucleic Acids Res 1994, 22: 4673-680. CrossRef
    26. Bürger E, G?risch H: Evidence for an essential lysine at the active site of L–Histidinol:NAD + oxidoreductase; a bifunctional dehydrogenase. / Eur J Biochem 1981, 118: 125-30. CrossRef
    27. Kheirolomoom A, Mano J, Nagai A, Ogawa A, Iwasaki G, Ohta D: Steady–state kinetics of cabbage Histidinol dehydrogenase. / Arch Biochem Biophys 1994, 312: 493-50. CrossRef
    28. Fujimori K, Ohta D: Isolation and characterization of a histidine biosynthetic gene in Arabidopsis encoding a polypeptide with two separate domains for phosphoribosyl–ATP pyrophosphohydrolase and phosphoribosyl–AMP cyclohydrolase. / Plant Physiology 1998, 118: 275-83. CrossRef
    29. Keesey JK Jr, Bigelis R, Fink GR: The product of the his4 gene cluster in Saccharomyces cerevisiae . A trifunctional polypeptide. / J Biol Chem 1979, 254: 7427-433.
    30. Van de Peer Y, De Wachter R: Evolutionary relationships among the eucaryotic crown taxa taking into account site–to–site rate variation in 18S rRNA. / J Mol Evol 1997, 45: 619-30. CrossRef
    31. Brandvain Y, Barker MS, Wade MJ: Gene co–inheritance and gene transfer. / Science 2007, 315: 1685. CrossRef
    32. Reyes–Prieto A, Hackett JD, Soares MB, Bonaldo MF, Bhattacharya D: Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. / Curr Biol 2006, 16: 2320-325. CrossRef
    33. Dandekar T, Snel B, Huynen M, Bork P: Conservation of gene order: a fingerprint of proteins that physically interact. / Trends Biochem Sci 1998, 23: 324-28. CrossRef
    34. Dauty E, Verkman AS: Molecular crowding reduces to a similar extent the diffusion of small solutes and macromolecules: measurement by fluorescence correlation spectroscopy. / J Mol Recognit 2004, 17: 441-47. CrossRef
    35. Zimmerman SB, Minton AP: Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli . / J Mol Biol 1991, 222: 599-20. CrossRef
    36. Huelsenbeck JP, Ronquist F: MrBayes: Bayesian inference of phylogenetic trees. / Bioinformatics 2001, 17: 754-55. CrossRef
    37. Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum–likelihood approach. / Mol Biol Evol 2001, 18: 691-99.
    38. Jones DT, Taylor WR, Thornton JM: A new approach to protein fold recognition. / Nature 1992, 358: 86-9. CrossRef
    39. Kumar S, Tamura K, Jakobsen IB, Nei M: MEGA2: molecular evolutionary genetics analysis software. / Bioinformatics 2001, 17: 1244-245. CrossRef
    40. Kaplan W, Littlejohn TG: / Swiss–PDB Viewer (Deep View). Brief Bioinform 2001, 2: 195-97.
  • 作者单位:Renato Fani (1)
    Matteo Brilli (1)
    Marco Fondi (1)
    Pietro Lió (2)

    1. Dept. of Animal Biology and Genetics, Romana 17, 50125, Florence, Italy
    2. Computer Laboratory, University of Cambridge, CB3 0FD, Cambridge, UK
文摘
Background Histidine biosynthesis is one of the best characterized anabolic pathways. There is a large body of genetic and biochemical information available, including operon structure, gene expression, and increasingly larger sequence databases. For over forty years this pathway has been the subject of extensive studies, mainly in Escherichia coli and Salmonella enterica, in both of which details of histidine biosynthesis appear to be identical. In these two enterobacteria the pathway is unbranched, includes a number of unusual reactions, and consists of nine intermediates; his genes are arranged in a compact operon (hisGDC [NB]HAF [IE]), with three of them (hisNB, hisD and hisIE) coding for bifunctional enzymes. We performed a detailed analysis of his gene fusions in available genomes to understand the role of gene fusions in shaping this pathway. Results The analysis of HisA structures revealed that several gene elongation events are at the root of this protein family: internal duplication have been identified by structural superposition of the modules composing the TIM-barrel protein. Several his gene fusions happened in distinct taxonomic lineages; hisNB originated within γ -proteobacteria and after its appearance it was transferred to Campylobacter species (ε -proteobacteria) and to some Bacteria belonging to the CFB group. The transfer involved the entire his operon. The hisIE gene fusion was found in several taxonomic lineages and our results suggest that it probably happened several times in distinct lineages. Gene fusions involving hisIE and hisD genes (HIS4) and hisH and hisF genes (HIS7) took place in the Eukarya domain; the latter has been transferred to some δ -proteobacteria. Conclusion Gene duplication is the most widely known mechanism responsible for the origin and evolution of metabolic pathways; however, several other mechanisms might concur in the process of pathway assembly and gene fusion appeared to be one of the most important and common.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700