Reduced dielectric loss and enhanced piezoelectric properties of Mn modified 0.71BiFeO3–0.29BaTiO3 ceramics sintered under oxygen atmosphere
详细信息    查看全文
  • 作者:Qiang Li ; Jinrong Cheng ; Jianguo Chen
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:28
  • 期:2
  • 页码:1370-1377
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Optical and Electronic Materials; Characterization and Evaluation of Materials;
  • 出版者:Springer US
  • ISSN:1573-482X
  • 卷排序:28
文摘
0.71BiFeO3–0.29BaTiO3 piezoelectric ceramics with Mn modification (BF–BT–x %Mn) sintered in air and O2 atmospheres have been investigated to understand the effects of sintering atmosphere on structure, dielectric, ferroelectric and piezoelectric properties. All ceramics exhibited the pseudo-cubic phase, while the O2 sintered ceramics possessed larger grain sizes and more homogeneous distribution. Dielectric, ferroelectric and piezoelectric properties of BF–BT–xMn ceramics were improved obviously after O2 atmospheres sintering, especially for the compositions with Mn contents less than 1.2 mol%. The evidence of impedance spectroscopy indicated that the concentration of oxygen vacancies decreased significantly by the introduction of O2 atmosphere. The dielectric loss tanδ was decreased down to 1/2 and the resistivity ρ enhanced 11 times for BF–BT–0 %Mn ceramics by the introduction of O2 atmosphere. The strains of BF–BT–0.5 %Mn increased from 0.09 to 0.22 and the d33* increased from 119 to 284 pm/V after sintering in O2 atmosphere. The Curie temperature and piezoelectric constant of O2 sintered BF–BT–1.2 %Mn reached up to 500 °C and 353 pm/V, respectively. This work suggests that sintering in the O2 oxygen atmosphere is an effective way to improve the dielectric and piezoelectric properties of BiFeO3–BaTiO3 solid solutions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700