Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium
详细信息    查看全文
文摘
This paper investigates buckling response of higher-order shear deformable nanobeams made of functionally graded piezoelectric (FGP) materials embedded in an elastic foundation. Material properties of FGP nanobeam change continuously in thickness direction based on power-law model. To capture small size effects, Eringen’s nonlocal elasticity theory is adopted. Employing Hamilton’s principle, the nonlocal governing equations of FGP nanobeams embedded in elastic foundation are obtained. To predict buckling behavior of embedded FGP nanobeams, the Navier-type analytical solution is applied to solve the governing equations. Numerical results demonstrate the influences of various parameters such as elastic foundation, external electric voltage, power-law index, nonlocal parameter and slenderness ratio on the buckling loads of size-dependent FGP nanobeams.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700