Photo-disintegration of the iron nucleus in fractured magnetite rocks with magnetostriction
详细信息    查看全文
  • 作者:A. Widom (1)
    J. Swain (1)
    Y. N. Srivastava (2)

    1. Physics Department
    ; Northeastern University ; Boston ; MA ; USA
    2. Physics Department & INFN
    ; University of Perugia ; Perugia ; Italy
  • 关键词:62.20.mm ; 81.40.Np ; 03.75.Be ; 14.20.Dh
  • 刊名:Meccanica
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:50
  • 期:5
  • 页码:1205-1216
  • 全文大小:366 KB
  • 参考文献:1. Carpinteri, A, Borla, O, Lacidogna, G, Manuello, A (2010) Neutron emissions in brittle rocks during compression tests. Phys Mesomech 13: pp. 264-274 CrossRef
    2. Carpinteri, A, Lacidogna, G, Manuello, A, Borla, O (2011) Energy emissions from brittle fracture: neutron measurements and geological evidences of piezonuclear reactions. Strength Fract Complex 7: pp. 13-31
    3. Carpinteri, A, Manuello, A (2011) Geomechanical and geochemical evidence of piezonuclear fission reactions in the Earths Crust. Strain Suppl 2: pp. 267-281 CrossRef
    4. Carpinteri, A, Chiodoni, A, Manuello, A, Sandrone, R (2011) Compositional and microchemical evidence of piezonuclear fission reactions in rock specimens subjected to compression tests. Strain Suppl 2: pp. 282-292 CrossRef
    5. Carpinteri, A, Manuello, A (2012) An indirect evidence of piezonuclear fission reactions: geomechanical and geochemical evolution in the Earths crust. Phys Mesomech 15: pp. 37-46 CrossRef
    6. Carpinteri, A, Lacidogna, G, Manuello, A, Borla, O (2012) Piezonuclear fission reactions: evidences from microchemical analysis, neutron emission, and geological transformation. Rock Mech Rock Eng 45: pp. 445-459 CrossRef
    7. Carpinteri, A, Lacidogna, G, Borla, O, Manuello, A, Niccolini, G (2012) Electromagnetic and neutron emissions from brittle rocks failure: experimental evidence and geological implications. Sadhana 37: pp. 59-78 CrossRef
    8. Widom, A, Swain, J, Srivastava, YN (2013) Neutron production from the fracture of piezoelectric rocks. J Phys G Nucl Part Phys G 40: pp. 015006-015014 CrossRef
    9. Koshevaya, S, Grimalsky, V, Makarets, N, Kotsarenko, A, Siquieros-Alatorre, J, Perez-Enriquez, R, Juarez-Romero, D (2008) Electromagnetic emission from magnetite plate cracking under seismic processes. Adv Geosci 14: pp. 25-28 CrossRef
    10. Swain J, Widom A, Srivastava YN (2013) Electrostrong nuclear disintegration in condensed matter. arXiv:1306.5165 [nucl-th]
    11. Widom A, Swain J, Srivastava YN (2013) Photo-disintegration of the iron nucleus in fractured magnetite rocks with magnetostriction. arXiv:1306.6286 [physics gen-phy]
    12. Snover, KA (1986) Giant resonances in excited nuclei. Annu Rev Nucl Part Sci 36: pp. 545-603 CrossRef
    13. Brink DM (2008) Giant resonances in excited nuclei. Talk presented at the workshop on chaos and collectivity in many body systems at the PMIPKS, Dresden, 5鈥? Mar 2008, pp. 1鈥?
    14. Ishkhanov BS, Kapitonov IM, Varlamov VV (2003) Proceedings of the 10th international seminar electromagnetic interactions of nuclei at low and medium energies, Moscow, 16鈥?8 Apr 2003. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, pp 5鈥?2. ISBN 5-944274-012-7, 2004
    15. Varlamov AV, Varlamov VV, Rudenko DS, Stepanov ME (1999) Atlas of giant dipole resonances: parameters and graphs of photo-nuclear reaction cross sections. International Nuclear Data Committee, INDC(NDS)-394 Distr. GN+NM
    16. Liu, JC (1997) Calculations of the giant dipole resonance photoneutrons using a coupled EGS4 Morse code. Radiat Prot Dosim 70: pp. 49-54 CrossRef
    17. Mao, X (1996) Giant dipole resonance neutron yields produced by electrons as a function of target material and thickness. Health Phys 70: pp. 207-214 CrossRef
    18. Thomas, W (1925) ber die Zahl der Dispersionselektronen, die einem stationren Zustande zugeordnet sind. (Vorlufige Mitteilung). Naturwissenschaften 13: pp. 627-627 CrossRef
    19. Kuhn, W (1025) Uber die Gesamtstarke der von einem Zustande aus- gehenden Absorptionslinien. Z Phys 33: pp. 408-412 CrossRef
    20. Reiche, F, Thomas, W (1025) Uber die Zahl der Dispersionelektronen die einem stationaren Zustand Zugeordnet sind. Z Phys 34: pp. 510-525 CrossRef
    21. Migdal, AB (1967) Theory of finite Fermi-systems and properties of the atomic nucleus. Willey, New York
    22. Migdal, AB, Voskresenskii, DN, Saperstein, EE, Troitskii, MA (1990) Pion degrees of freedom in nuclear medium. Phys Rep 192: pp. 179-437 CrossRef
    23. Berestetskii, VB, Lifshitz, EM, Pitaevskii, LP (1980) Quantum electrodynamics. Pergamon Press, Oxford
    24. Lollioz, L, Pattofatto, S, Hubert, O (2006) Application of piezo-magnetism for the measurement of stress during an impact. J Electr Eng 57: pp. 15-20
    25. Gruerro, C, Schelbert, J, Bonamy, D, Dolmas, D (2012) Proc Natl Acad Sci USA 129: pp. 190
    26. Landau, LD, Lifshitz, EM (1970) Theory of elasticity. Pergamon Press, Oxford
    27. Freund, LB (1998) Dynamic fracture mechanics. Cambridge University Press, Cambridge
    28. Griffith, AA (1921) The phenomena of rupture and flow in solids. Phil Trans R Soc Lond A221: pp. 163-197 CrossRef
    29. Widom, A, Larsen, L (2006) Ultra low momentum neutron catalyzed nuclear reactions on metallic hydride surfaces. Eur Phys J C 46: pp. 107-112 CrossRef
    30. Widom A, Larsen L (2007) Theoretical standard model rates of proton to neutron conversions near metallic hydride surfaces. arXiv:0608059v2 [nucl-th]
    31. Cirillo, D, Germano, R, Tontodonato, V, Widom, A, Srivastava, YN, Giudice, E, Vitiello, G (2012) Water plasma modes and nuclear transmutations on the metallic cathode of a plasma discharge electrolytic cell. Key Eng Mater 495: pp. 124-128 CrossRef
    32. Cirillo, D, Germano, R, Tontodonato, V, Widom, A, Srivastava, YN, Giudice, E, Vitiello, G (2012) Experimental evidence of a neutron flux generation in a plasma discharge electrolytic cell. Key Eng Mater 495: pp. 104-107 CrossRef
    33. Ciuchi, S, Maiani, L, Polosa, AD, Riquer, V, Ruocco, G, Vignati, M (2012) Low energy neutron production by inverse-beta decay in metallic hydride surfaces. Eur Phys J C72: pp. 2193-2196 CrossRef
    34. Widom A, Srivastava YN, Larsen L (2012) Erroneous wave functions of Ciuchi et al for collective modes in neutron production on metallic hydride cathodes. arXiv:1210.5212v1, [nucl-th]
    35. Widom A, Swain J, Srivastava YN (2013) Weak interaction neutron production rates in fully ionized plasmas. arXiv:1305.4899v1, [hep-ph]
    36. Fl眉ge, S (1970) Practical quantum mechanics. Springer, Berlin
    37. Bahcall, JH (1962) Electron capture and nuclear matrix elements of $$Be^7$$ B e 7. Phys Rev 128: pp. 1297-1301 CrossRef
    38. Bardin, G (1994) Determination of the electric and magnetic form factors of the proton in the time-like region. Nucl Phys B411: pp. 3-32 CrossRef
    39. Maiani, L, Polosa, AD, Riquer, V (2014) Neutron production rates by inverse-beta decay in fully ionized plasmas. Eur Phys J C 74: pp. 2843-2852 CrossRef
    40. Abrikosov, AA, Gorkov, LP, Dzyaloshinskii, IE (1975) Methods of quantum field theory in statistical physics, Sect. 22. Dover Publications, New York
    41. Landau, LD, Lifsitz, EM (1981) Fisica Statistica, Sect. 85. Editori Reuniti Edizioni Mir, Rome
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Civil Engineering
    Automotive and Aerospace Engineering and Traffic
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1572-9648
文摘
There has been considerable interest in recent experiments on iron nuclear disintegrations observed when rocks containing such nuclei are crushed and fractured. The resulting nuclear transmutations are particularly strong for the case of magnetite rocks, i.e. loadstones. We argue that the fission of the iron nucleus is a consequence of photo-disintegration. The electro-strong coupling between electromagnetic fields and nuclear giant dipole resonances are central for producing observed nuclear reactions. The large electron energies produced during the fracture of piezomagnetic rocks are closely analogous to the previously discussed case of the fracture of piezoelectric rocks. In both cases electro-weak interactions can produce neutrons and neutrinos from energetic protons and electrons thus inducing nuclear transmutations. The electro-strong condensed matter coupling discussed herein represents new many body collective nuclear photo-disintegration effects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700