Molecular Cloning and Characterization of the Light-Harvesting Chlorophyll a/b Gene from the Pigeon pea (Cajanus cajan)
详细信息    查看全文
  • 作者:Guang Qiao ; Xiao-Peng Wen ; Ting Zhang
  • 关键词:Pigeon pea (Cajanus cajan) ; Light ; harvesting chlorophyll a/b gene ; RACE ; Gene expression ; Bioinformatics analysis
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:177
  • 期:7
  • 页码:1447-1455
  • 全文大小:801 KB
  • 参考文献:1.Liu, J. H., Ban, Y., Wen, X. P., Nakajima, I., & Moriguchi, T. (2009). Molecular cloning and expression analysis of an arginine decarboxylase gene from peach (Prunus persica). Gene,429, 10–17.CrossRef
    2.Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biology,6, 410–417.
    3.Gosal, S. S., Wani, S. H., & Kang, M. S. (2009). Biotechnology and drought tolerance. J Crop Improv,23, 19–54.CrossRef
    4.Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. Plant Cell,7, 1099–1111.CrossRef
    5.Govind, G., ThammeGowda, H. V., Kalaiarasi, P. J., Iyer, D. R., Muthappa, S. K., Nese, S., & Makarla, U. K. (2009). Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Molecular Genetics and Genomics,281, 591–605.CrossRef
    6.Ramanjulu, S., & Bartels, D. (2002). Drought- and desiccation-induced modulation of gene expression in plants. Plant, Cell & Environment 25,141–151.CrossRef
    7.Wang, H. G., Zhang, H. L., Gao, F. H., Li, J. X., & Li, Z. C. (2007). Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theoretical and Applied Genetics 115, 1109–1126.CrossRef
    8.Zheng, J., Zhao, J. F., Tao, Y. Z., Wang, J. H., Liu, Y. J., Fu, J. J., Jin, Y., Gao, P., Zhang, J. P., Bai, Y. F., & Wang, G. Y. (2004). Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Molecular Biology,55, 807–823.CrossRef
    9.Peter, G. F., & Thornber, J. P. (1991). Biochemical composition and organization of higher plant photosystem II light-harvesting pigment proteins. The Journal of Biological Chemistry,266, 16745–16754.
    10.Janik, E., Maksymiec, W., Mazur, R., Garstka, M., & Gruszecki, W. I. (2010). Structural and functional modifications of the major light-harvesting complex II in cadmium- or copper-treated Secale cereale. Plant & Cell Physiology,8, 1330–1340.CrossRef
    11.Teramoto, H., Ono, T., & Minagawa, J. (2001). Identification of lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Plant & Cell Physiology,42, 849–856.CrossRef
    12.Hazen, S. P., Pathan, M. S., Sanchez, A., Baxter, I., Dunn, M., Estes, B., Chang, H., Zhu, T., Kreps, J. A., & Nguyen, H. T. (2005). Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Funt Integr Genomic,5, 104–116.CrossRef
    13.Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., VON Korff, M., Varshney, R. K., Graner, A., & Valkoun, J. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley Geno-types in response to drought stress during the reproductive stage. Journal of Experimental Botany,12, 3531–3544.CrossRef
    14.Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., & Shinozaki, K. (2002). Monitoring the expression profiles of 7,000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant J,31, 279–292.CrossRef
    15.Qiao, G., Wen, X. P., Yu, L. F., & Ji, X. B. (2011). The enhancement of drought tolerance for pigeon pea inoculated by arbuscular mycorrhizae fungi. Plant, Soil and Environment,57, 541–546.CrossRef
    16.Qiao, G., Wen, X. P., Yu, L. F., & Ji, X. B. (2012). Identification of differentially expressed genes preferably related to drought response in pigeon pea (Cajanus cajan) inoculated by arbuscular mycorrhizae fungi (AMF). Acta Physiologiae Plantarum,34, 1711–1721.CrossRef
    17.McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., & Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist,115, 495–502.CrossRef
    18.Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res,29, e45.CrossRef
    19.Mathis, J. N., & Burkey, K. O. (1987). Regulation of light-harvesting chlorophyll a/b binding protein biosynthesis in greening seedlings. Plant Physiology,85, 971–977.CrossRef
    20.Thompson, W. F., Everett, M., Polans, N. O., Jorgensen, R. A., & Palmer, J. D. (1983). Phytochrome control of RNA levels in developing pea and mung-bean leaves. Planta,158, 487–500.CrossRef
    21.Piechulla, B., Pichersky, E., Cashmore, A. R., & Gruissem, W. (1986). Expression of nuclear and plastid genes for photosynthesis-specific proteins during tomato fruit development and ripening. Plant Molecular Biology,7, 367–376.CrossRef
    22.Sakamoto, M., Sanada, Y., Tagiri, A., Murakami, T., Ohashi, Y., & Matsuoka, M. (1991). Structure and characterization of a gene for light-harvesting Chl a/b binding protein from rice. Plant & Cell Physiology,32, 385–393.
    23.Xu, H., Ma, S., Cao, Y., Feng, S., Xu, Q., Qiao, D., & Cao, Y. (2012). Light intensity dependent expression of Lhca gene family encoding LHCI in Dunaliella salina. African Journal of Microbiology Research,6, 6165–6171.
    24.Chen, W. M., Shi, Y., Su, Y. Q., Fei, B. J., Li, W., Qiao, D. R., & Cao, Y. (2010). Coordinate expression of light-harvesting chlorophyll a/b gene family of photosystem II and chlorophyll a oxygenase gene regulated by salt-induced phosphorylation in Dunaliella salina. Photosynthetica,48, 355–360.CrossRef
    25.Xu, Y. H., Liu, R., Yan, L., Liu, Z. Q., Jiang, S. C., Shen, Y. Y., Wang, X. F., & Zhang, D. P. (2012). Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. Journal of Experimental Botany,63, 1095–1106.CrossRef
    26.Amaya-Carpio, L., Davies, F. T., Fox, T., & He, C. (2009). Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of ipomoea carnea ssp. Fistulosa. Photosynthetica,47, 1–10.CrossRef
    27.Wu, Q. S., & Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology,163, 417–425.CrossRef
  • 作者单位:Guang Qiao (1)
    Xiao-Peng Wen (1)
    Ting Zhang (1)

    1. Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region and Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
Light-harvesting chlorophyll a/b-binding proteins (LHCB) have been implicated in the stress response. In this study, a gene encoding LHCB in the pigeon pea was cloned and characterized. Based on the sequence of a previously obtained 327 bp Est, a full-length 793 bp cDNA was cloned using the rapid amplification of cDNA ends (RACE) method. It was designated CcLHCB1 and encoded a 262 amino acid protein. The calculated molecular weight of the CcLHCB1 protein was 27.89 kDa, and the theoretical isoelectric point was 5.29. Homology search and sequence multi-alignment demonstrated that the CcLHCB1 protein sequence shared a high identity with LHCB from other plants. Bioinformatics analysis revealed that CcLHCB1 was a hydrophobic protein with three transmembrane domains. By fluorescent quantitative real-time polymerase chain reaction (PCR), CcLHCB1 mRNA transcripts were detectable in different tissues (leaf, stem, and root), with the highest level found in the leaf. The expression of CcLHCB1 mRNA in the leaves was up-regulated by drought stimulation and AM inoculation. Our results provide the basis for a better understanding of the molecular organization of LCHB and might be useful for understanding the interaction between plants and microbes in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700