Necessity of Smad4 for the normal development of the mouse lacrimal gland
详细信息    查看全文
  • 作者:Ying Liu (1)
    Ding Lin (1)
  • 关键词:Smad4 ; Lacrimal gland ; Development ; Pigmentation
  • 刊名:Japanese Journal of Ophthalmology
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:58
  • 期:3
  • 页码:298-306
  • 全文大小:
  • 参考文献:1. Makarenkova HP, Ito M, Venkatesh G, Faber SC, Sun L, McMahon G, et al. FGF 10 is an inducer and Pax6 a competence factor for lacrimal gland development. Development. 2000;127:2563-2.
    2. Govindarajan V, Ito M, Makarenkova HP, Lang RA, Overbeek PA. Endogenous and ectopic gland induction by FGF-10. Dev Biol. 2002;225:188-00. CrossRef
    3. Bellusci S, Henderson R, Winnier G, Oikawa T, Hogan BL. Evidence from normal expression and targeted mis-expression that bone morphogenetic protein (BMP-4) plays a role in mouse embryonic lung morphogenesis. Development. 1996;122:1693-02.
    4. Dudley AT, Godin RE, Robertson EJ. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 1999;13:1601-3. CrossRef
    5. Raatikainen-Ahokas A, Hytonen M, Tenhunen A, Sainio K, Sariola H. BMP-4 affects the differentiation metanephric mesenchyme and reveals an early anterior-posterior axis of the embryonic kidney. Dev Dyn. 2000;217:146-8. CrossRef
    6. Jaskoll T, Zhou YM, Chai Y, Makarenkova HP, Collinson JM, West JD, et al. Embryonic submandibular gland morphogenesis: stage-specific protein localization of FGFs, BMPs, Pax6 and Pax9 in normal mice and abnormal SMG phenotypes in FgfR2-IIIc (+/Delta), BMP(?? and Pax(?? mice. Cells Tissues Organs. 2002;170:83-8. CrossRef
    7. Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 2005;16:251-3. CrossRef
    8. Miyazono K, Dijke K, Heldin CH. TGF signaling by Smad proteins. Adv Immunol. 2000;75:115-7. CrossRef
    9. Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117-9. CrossRef
    10. Xu X, Han J, Ito Y, Bringas P, Deng CH, Chai Y. Ectodermal Smad4 and p38 MAPK are functionally redundant in mediating TGF-β/BMP signaling during tooth and palate development. Dev Cell. 2008;15:322-. CrossRef
    11. Gao Y, Yang G, Weng T, Du J, Wang X, Zhou J, et al. Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice. Mol Cell Biol. 2009;29:5941-1. CrossRef
    12. Rajagopal R, Huang J, Dattilo LK, Kaartinen V, Mishina Y, Deng CX, et al. The type I BMP receptors, Bmpr1a and Acvr1, activate multiple signaling pathways to regulate lens formation. Dev Biol. 2009;335:305-6. CrossRef
    13. Azhar M, Wang PY, Frugier T, Koishi K, Deng C, Noakes PG, et al. Myocardial deletion of Smad4 using a novel α skeletal muscle actin Cre recombinase transgenic mouse causes misalignment of the cardiac outflow tract. Int J Biol Sci. 2010;20:546-5. CrossRef
    14. Liu Y, Kawai K, Khashabi S, Deng C, Liu YH, Yiu S. Inactivation of Smad4 leads to impaired ocular development and cataract formation. Biochem Biophys Res Commun. 2010;400:476-2. CrossRef
    15. Grindley JC, Davidson DR, Hill RE. The role of Pax-6 in eye and nasal development. Development. 1995;121:1433-2.
    16. Ashery-Padan R, Marquardt T, Zhou X, Gruss P. Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 2000;14:2701-1. CrossRef
    17. Dimanling PV, Faber SC, Auerbach W, Makarenkova HP, Lang RA. The upstream ectoderm enhancer in Pax6 has an important role in lens induction. Development. 2001;128:4415-4.
    18. Yang X, Li C, Herrera PL, Deng CX. Generation of Smad4/Dpc4 conditional knockout mice. Genesis. 2002;32:80-. CrossRef
    19. Rios JD, Horikawa Y, Chen LL, Kublin CL, Hodges RR, Dartt DA, et al. Age-dependent alterations in mouse exorbital lacrimal gland structure, innervation and secretory response. Exp Eye Res. 2005;80:477-1. CrossRef
    20. Entesarian M, Matsson H, Klar J, Bergendal B, Olson L, Arakaki R, et al. Mutations in the gene encoding fibroblast growth factor 10 are associated with aplasia of lacrimal and salivary glands. Nat Genet. 2005;37:125-. CrossRef
    21. Pan Y, Carbe C, Powers A, Zhang EE, Esko JD, Grobe K, et al. Bud specific N-sulfation of heparin sulfate regulates Shp2-dependent FGF signaling during lacrimal gland induction. Development. 2008;135:301-0. CrossRef
    22. Pan Y, Carbe C, Powers A, Feng GS, Zhang X. Sprouty2-modulated Kras signaling rescues Shp2 deficiency during lens and lacrimal gland development. Development. 2010;137:1085-3. CrossRef
    23. Dean CH, Ito M, Makarenkova HP, Faber SC, Lang RA. Bmp7 regulates branching morphogenesis of the lacrimal gland by promoting mesenchymal proliferation and condensation. Development. 2004;131:4155-5. CrossRef
    24. Dean CH, Miller LA, Smith AN, Dufort D, Lang RA, Niswander LA. Canonical Wnt signaling negatively regulates branching morphogenesis of the lung and lacrimal gland. Dev Biol. 2005;286:270-6. CrossRef
    25. Mattiske D, Sommer P, Kidson SH, Hogan BL. The role of the forkhead transcription factor, Foxc1, in the development of the mouse lacrimal gland. Dev Dyn. 2006;235:1074-0. CrossRef
    26. Jin W, Takagi T, Kanesashi SN, Kurahashi T, Nomura T, Harada J, et al. Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev Cell. 2006;10:461-1. CrossRef
    27. Zamani N, Brown CW. Emerging roles for the transforming growth factor-β superfamily in regulating adiposity and energy expenditure. Endocr Rev. 2011;32:387-03. CrossRef
    28. Huang J, Dattilo LD, Rajagopal R, Liu Y, Kaartinen V, Mishina Y, et al. FGF-regulated BMP signaling is required for eyelid closure and to specify conjunctival epithelial cell fate. Development. 2009;136:1741-0. CrossRef
    29. Ratcliff R, Evans MJ, Cuthbert AW, MacVinish LJ, Foster D, Anderson JR, et al. Production of a severe cystic fibrosis mutation in mice by gene targeting. Nat Genet. 1993;4:35-1. CrossRef
    30. Abdel-Malek Z, Suzuki I, Tada A, Im S, Akcali C. The melanocortin-1 receptor and human pigmentation. Ann N Y Acad Sci. 1999;885:117-3. CrossRef
    31. Bentley NJ, Eisen T, Goding CR. Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol Cell Biol. 1994;14:7996-006.
    32. Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP, et al. Microphthalmia gene product as a signal transducer in Camp-induced differentiation of melanocytes. J Cell Biol. 1998;142:827-5. CrossRef
    33. Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J Biol Chem. 1997;272:503-. CrossRef
    34. Yaar M, Wu C, Park HY, Panova I, Schutz G, Gilchrest BA. Bone morphogenetic protein-4, a novel modulator of melanogenesis. J Biol Chem. 2006;281:25307-4. CrossRef
    35. Park HY, Wu C, Yaar M, Stachur CM, Kosmadaki M, Gilchrest BA. Role of BMP-4 and its signaling pathways in cultured human melanocytes. Int J Cell Biol. 2009;2009:750482-2. CrossRef
    36. Martinez-Esparza M, Solano F, Garcia-Borron JC. Independent regulation of tyrosinase by the hypopigmenting cytokines TGF beta1 and TNF alpha and the melanogenic hormone alpha-MSH in B16 mouse melanocytes. Cell Mol Biol. 1999;45:991-000.
    37. Quan T, He T, Voorhees JJ, Fisher GJ. Ultraviolet irradiation blocks cellular responses to transforming growth factor-beta by down-regulating its type-II receptor and inducing Smad7. J Biol Chem. 2001;276:26349-6. CrossRef
    38. Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am J Pathol. 2004;165:741-1. CrossRef
    39. Yang G, Li Y, Nishimura EK, Xin H, Zhou A, Guo Y, et al. Inhibition of PAX3 by TGF-β modulates melanocyte viability. Mol Cell. 2008;32:554-3. CrossRef
  • 作者单位:Ying Liu (1)
    Ding Lin (1)

    1. Aier Eye Hospital of Changsha, 388, 3rd Segment of Furong Middle Road, Changsha, 410015, Hunan, China
  • ISSN:1613-2246
文摘
Purpose Smad4, a key intracellular mediator in TGF-β signaling, plays a critical role in the normal development of many tissues/organs. However, its functional role in the development of the lacrimal gland (LG) has never been reported. The aim of this study was to investigate the role Smad4 may play in the development of LG by using Smad4 conditional knockout mice and comparing their LG changes with the LG in normal control mice. Methods Smad4 in the LG, as well as in the lens, cornea, and ectoderm of the eyelids, was conditionally inactivated by using Pax6 promoter-driven Cre-transgenic mice. Lac Z reporter was used to visualize the developing LG by X-gal staining, and standard histologic approaches were used to reveal morphologic alterations. Results Inactivation of Smad4 resulted in reduction in the size and number of acini in the embryonic LG and in pigment accumulation within the LG, although it did not affect the formation of the primary lacrimal bud. After birth, the LG from Smad4-mutant mice developed slowly, and pigment was observed starting from the P7 mutant LG. Thereafter, the mutant LG was considerably smaller than the normal LG and was eventually replaced by adipose tissue. Conclusions These results support the notion that Smad4 is essential for the normal development and maintenance of the mouse LG.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700