Discrepancy Theory and Quasi-Monte Carlo Integration
详细信息    查看全文
  • 作者:Josef Dick (16)
    Friedrich Pillichshammer (17)
  • 刊名:Lecture Notes in Mathematics
  • 出版年:2014
  • 出版时间:2014
  • 年:2014
  • 卷:2107
  • 期:1
  • 页码:539-619
  • 全文大小:987 KB
  • 参考文献:1. M. Abramowitz, I.A. Stegun (eds.), / Handbook of mathematical functions with formulas, graphs and mathematical tables. (U.S. Government Printing Office, Washington, DC, 1964)
    2. C. Aistleitner, Covering numbers, dyadic chaining and discrepancy. J. Complexity 27(6), 531鈥?40 (2011). doi:10.1016/j.jco.2011.03.001
    3. N. Aronszajn, Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337鈥?04 (1950). doi:10.2307/1990404
    4. N.S. Bakhvalov, On Approximate Calculation of Multiple Integrals. Vestnik Moskovskogo Universiteta, Seriya Matematiki, Mehaniki, Astronomi, Fiziki, Himii 4, 3鈥?8 (1959). In Russian
    5. J. Baldeaux, J. Dick, J. Greslehner, F. Pillichshammer, Construction algorithms for higher order polynomial lattice rules. J. Complexity 27(3鈥?), 281鈥?99 (2011). doi:10.1016/j.jco.2010.06.002
    6. J. Baldeaux, J. Dick, G. Leobacher, D. Nuyens, F. Pillichshammer, Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules. Numer. Algorithms 59(3), 403鈥?31 (2012). doi:10.1007/s11075-011-9497-y
    7. R. B茅jian, Minoration de la discr茅pance d鈥檜ne suite quelconque sur / T. Acta Arithmetica 41, 185鈥?02 (1982)
    8. D. Bilyk, M.T. Lacey, A. Vagharshakyan, On the small ball inequality in all dimensions. J. Funct. Anal. 254(9), 2470鈥?502 (2008). doi:10.1016/j.jfa.2007.09.010
    9. J. Brauchart, J. Dick, A simple proof of stolarsky鈥檚 invariance principle. Proc. Am. Math. Soc. 141(6), 2085鈥?096 (2013) CrossRef
    10. V.A. Bykovskii, The discrepancy of the Korobov lattice points. Izvestiya: Mathematics 76(3), 446鈥?65 (2012). doi:10.1070/IM2012v076n03ABEH002591
    11. W.W.L. Chen, On irregularities of point distribution. Mathematika 27, 153鈥?70 (1980) CrossRef
    12. W.W.L. Chen, M.M. Skriganov, Explicit constructions in the classical mean squares problem in irregularities of point distribution. J. Reine Angew. Math. 545, 67鈥?5 (2002). doi:10.1515/crll.2002.037
    13. W.W.L. Chen, M.M. Skriganov, Orthogonality and digit shifts in the classical mean squares problem in irregularities of point distribution, in / Diophantine approximation. Festschrift for Wolfgang Schmidt. Based on lectures given at a conference at the Erwin Schr枚dinger Institute, ed. by Schlickewei, Hans Peter Developments in Mathematics, vol. 16 (Springer, Wien, 2008), pp. 141鈥?59. doi:10.1007/978-3-211-74280-8_7
    14. R. Cools, J.N. Lyness, Three- and four-dimensional / K-optimal lattice rules of moderate trigonometric degree. Math. Comput. 70(236), 1549鈥?567 (2001). doi:10.1090/S0025-5718-01-01326-6
    15. L.L. Cristea, J. Dick, F. Pillichshammer, On the mean square weighted \(\mathcal{L}_{2}\) discrepancy of randomized digital nets in prime base. J. Complexity 22(5), 605鈥?29 (2006). doi:10.1016/j.jco.2006.03.005
    16. H. Davenport, Note on irregularities of distribution. Math. Lond. 3, 131鈥?35 (1956). doi:10.1112/S0025579300001807
    17. J. Dick, F.Y. Kuo, F. Pillichshammer, I.H. Sloan, Construction algorithms for polynomial lattice rules for multivariate integration. Math. Comput. 74(252), 1895鈥?921 (2005). doi:10.1090/S0025-5718-05-01742-4
    18. J. Dick, On the convergence rate of the component-by-component construction of good lattice rules. J. Complexity 20(4), 493鈥?22 (2004). doi:10.1016/j.jco.2003.11.008
    19. J. Dick, Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions. SIAM J. Numer. Anal. 45(5), 2141鈥?176 (2007). doi:10.1137/060658916
    20. J. Dick, Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46(3), 1519鈥?553 (2008). doi:10.1137/060666639
    21. J. Dick, The decay of the Walsh coefficients of smooth functions. Bull. Aust. Math. Soc. 80(3), 430鈥?53 (2009). doi:10.1017/S0004972709000392
    22. J. Dick, Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands. Ann. Stat. 39(3), 1372鈥?398 (2011). doi:10.1214/11-AOS880
    23. J. Dick, Quasi-Monte Carlo numerical integration on \(\mathbb{R}^{s}\) : digital nets and worst-case error. SIAM J. Numer. Anal. 49(4), 1661鈥?691 (2011). doi:10.1137/100789853
    24. J. Dick, J. Baldeaux, Equidistribution properties of generalized nets and sequences., in / Monte Carlo and quasi-Monte Carlo methods 2008. Proceedings of the 8th international conference Monte Carlo and quasi-Monte Carlo methods in scientific computing, Montr茅al, Canada, July 6鈥?1, 2008., ed. by L鈥橢cuyer, P., Owen, A.B. (Springer, Berlin, 2009), pp. 305鈥?22. doi:10.1007/978-3-642-04107-5_19
    25. J. Dick, P. Kritzer, Duality theory and propagation rules for generalized digital nets. Math. Comput. 79(270), 993鈥?017 (2010). doi:10.1090/S0025-5718-09-02315-1
    26. J. Dick, H. Niederreiter, On the exact / t-value of Niederreiter and Sobol鈥?sequences. J. Complexity 24(5-6), 572鈥?81 (2008). doi:10.1016/j.jco.2008.05.004
    27. J. Dick, F. Pillichshammer, Optimal \(\mathcal{L}_{2}\) discrepancy bounds for higher order digital sequences over the finite field \(\mathbb{F}_{2}\) . Acta Arithmetica 126(1), 65鈥?9 (2014) CrossRef
    28. J. Dick, F. Pillichshammer, Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces. J. Complexity 21(2), 149鈥?95 (2005). doi:10.1016/j.jco.2004.07.003
    29. J. Dick, F. Pillichshammer, On the mean square weighted \(\mathcal{L}_{2}\) discrepancy of randomized digital ( / t,鈥?em class="a-plus-plus">m,鈥?em class="a-plus-plus">s)-nets over聽 \(\mathbb{Z}_{2}\) . Acta Arithmetica 117(4), 371鈥?03 (2005). doi:10.4064/aa117-4-4
    30. J. Dick, F. Pillichshammer, Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules. J. Complexity 23(4-6), 436鈥?53 (2007). doi:10.1016/j.jco.2007.02.001
    31. J. Dick, F. Pillichshammer, / Digital nets and sequences. Discrepancy theory and quasi-Monte Carlo integration. (Cambridge University Press, Cambridge, 2010)
    32. J. Dick, G. Leobacher, F. Pillichshammer, Construction algorithms for digital nets with low weighted star discrepancy. SIAM J. Numer. Anal. 43(1), 76鈥?5 (2005). doi:10.1137/040604662
    33. J. Dick, I.H. Sloan, X. Wang, H. Wo藕niakowski, Liberating the weights. J. Complexity 20(5), 593鈥?23 (2004). doi:10.1016/j.jco.2003.06.002
    34. J. Dick, I.H. Sloan, X. Wang, H. Wo藕niakowski, Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103(1), 63鈥?7 (2006). doi:10.1007/s00211-005-0674-6
    35. J. Dick, P. Kritzer, G. Leobacher, F. Pillichshammer, Constructions of general polynomial lattice rules based on the weighted star discrepancy. Finite Fields Appl. 13(4), 1045鈥?070 (2007). doi:10.1016/j.ffa.2006.09.001
    36. J. Dick, P. Kritzer, F. Pillichshammer, W.C. Schmid, On the existence of higher order polynomial lattices based on a generalized figure of merit. J. Complexity 23(4鈥?), 581鈥?93 (2007). doi:10.1016/j.jco.2006.12.003
    37. J. Dick, G. Larcher, F. Pillichshammer, H. Wo藕niakowski, Exponential convergence and tractability of multivariate integration for Korobov spaces. Math. Comput. 80(274), 905鈥?30 (2011). doi:10.1090/S0025-5718-2010-02433-0
    38. B. Doerr, M. Gnewuch, Construction of low-discrepancy point sets of small size by bracketing covers and dependent randomized rounding, in / Monte Carlo and Quasi-Monte Carlo Methods 2006 (Springer, Berlin, 2008), pp. 299鈥?12
    39. B. Doerr, M. Gnewuch, A. Srivastav, Bounds and constructions for the star-discrepancy via / 未-covers. J. Complexity 21(5), 691鈥?09 (2005). doi:10.1016/j.jco.2005.05.002
    40. B. Doerr, M. Gnewuch, P. Kritzer, F. Pillichshammer, Component-by-component construction of low-discrepancy point sets of small size. Monte Carlo Methods Appl. 14(2), 129鈥?49 (2008). doi:10.1515/MCMA.2008.007
    41. H. Faure, Discr茅pance de suites associ茅es 脿 un syst猫me de num茅ration (en dimension / s). Acta Arithmetica 41, 337鈥?51 (1982)
    42. K.K. Frolov, An upper estimate of the discrepancy in the / L / p -metric, 2鈥夆墹鈥?em class="a-plus-plus">p鈥?lt;鈥?em class="a-plus-plus">鈭?/em>. Dokl. Akad. Nauk SSSR 252, 805鈥?07 (1980)
    43. E.N. Gilbert, A comparison of signalling alphabets. Bell Syst. Tech. J. 3, 504鈥?22 (1952) CrossRef
    44. M. Gnewuch, Infinite-dimensional integration on weighted Hilbert spaces. Math. Comput. 81(280), 2175鈥?205 (2012). doi:10.1090/S0025-5718-2012-02583-X
    45. M. Gnewuch, Weighted geometric discrepancies and numerical integration on reproducing kernel Hilbert spaces. J. Complexity 28(1), 2鈥?7 (2012). doi:10.1016/j.jco.2011.02.003
    46. M. Gnewuch, A. Srivastav, C. Winzen, Finding optimal volume subintervals with / k points and calculating the star discrepancy are NP-hard problems. J. Complexity 25(2), 115鈥?27 (2009). doi:10.1016/j.jco.2008.10.001
    47. S. Heinrich, F.J. Hickernell, R.-X. Yue, Optimal quadrature for Haar wavelet spaces. Math. Comput. 73(245), 259鈥?77 (2004). doi:10.1090/S0025-5718-03-01531-X
    48. S. Heinrich, E. Novak, G.W. Wasilkowski, H. Wo藕niakowski, The inverse of the star-discrepancy depends linearly on the dimension. Acta Arithmetica 96(3), 279鈥?02 (2001). doi:10.4064/aa96-3-7
    49. P. Hellekalek, General discrepancy estimates: The Walsh function system. Acta Arithmetica 67(3), 209鈥?18 (1994)
    50. F.J. Hickernell, H. Niederreiter, The existence of good extensible rank-1 lattices. J. Complexity 19(3), 286鈥?00 (2003). doi:10.1016/S0885-064X(02)00026-2
    51. A. Hinrichs, Covering numbers, Vapnik-膶ervonenkis classes and bounds for the star-discrepancy. J. Complexity 20(4), 477鈥?83 (2004). doi:10.1016/j.jco.2004.01.001
    52. A. Hinrichs, F. Pillichshammer, W.C. Schmid, Tractability properties of the weighted star discrepancy. J. Complexity 24(2), 134鈥?43 (2008). doi:10.1016/j.jco.2007.08.002
    53. E. Hlawka, 脺ber die Diskrepanz mehrdimensionaler Folgen mod 1. Math. Z. 77, 273鈥?84 (1961). doi:10.1007/BF01180179
    54. E. Hlawka, Zur angen盲herten Berechnung mehrfacher Integrale. Monatsh. Math. 66, 140鈥?51 (1962). doi:10.1007/BF01387711
    55. H.S. Hong, F.J. Hickernell, Algorithm 823: Implementing scrambled digital sequences. ACM Trans. Math. Softw. 29(2), 95鈥?09 (2003). doi:10.1145/779359.779360
    56. S. Joe, Component by component construction of rank-1 lattice rules having / O( / n 鈭?(ln( / n)) / d ) star discrepancy, in / Monte Carlo and Quasi-Monte Carlo Methods 2002, ed. by H. Niederreiter (Springer, Berlin-Heidelberg-New York, 2004)
    57. S. Joe, Construction of good rank-1 lattice rules based on the weighted star discrepancy., in / Monte Carlo and Quasi-Monte Carlo Methods 2004, ed. by H. Niederreiter, D. Talay (Springer, Berlin, 2006), pp. 181鈥?96
    58. S. Joe, I.H. Sloan, On computing the lattice rule criterion / R. Math. Comput. 59(200), 557鈥?68 (1992). doi:10.2307/2153074
    59. N.M. Korobov, Approximate evolution of repeated integrals. Dokl. Akad. Nauk SSSR 124, 1207鈥?210 (1959)
    60. N.M. Korobov, / Number-Theoretic Methods in Approximate Analysis (Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963)
    61. P. Kritzer, Improved upper bounds on the star discrepancy of ( / t,鈥?em class="a-plus-plus">m,鈥?em class="a-plus-plus">s)-nets and ( / t,鈥?em class="a-plus-plus">s)-sequences. J. Complexity 22(3), 336鈥?47 (2006). doi:10.1016/j.jco.2005.10.004
    62. P. Kritzer, F. Pillichshammer, A lower bound on a quantity related to the quality of polynomial lattices. Funct. Approx. Comment. Math. 45(1), 125鈥?37 (2011) CrossRef
    63. P. Kritzer, F. Pillichshammer, Low discrepancy polynomial lattice point sets. J. Number Theory 132(11), 2510鈥?534 (2012). doi:10.1016/j.jnt.2012.05.006
    64. P. Kritzer, F. Pillichshammer, H. Wo藕niakowski, Multivariate integration of infinitely many times differentiable functions in weighted Korobov spaces. Mathematics of Computation 83(287), 1189鈥?206 (2014) CrossRef
    65. L. Kuipers, H. Niederreiter, / Uniform Distribution of Sequences. (Pure and Applied Mathematics. New York etc.: Wiley, a Wiley-Interscience Publication, 390 p., 1974; reprint, Dover Publications, Mineola, NY, 2006)
    66. F.Y. Kuo, Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity 19(3), 301鈥?20 (2003). doi:10.1016/S0885-064X(03)00006-2
    67. G. Larcher, F. Pillichshammer, Sums of distances to the nearest integer and the discrepancy of digital nets. Acta Arithmetica 106(4), 379鈥?08 (2003). doi:10.4064/aa106-4-4
    68. G. Larcher, A. Lauss, H. Niederreiter, W.C. Schmid, Optimal polynomials for ( / t,鈥?em class="a-plus-plus">m,鈥?em class="a-plus-plus">s)-nets and numerical integration of multivariate Walsh series. SIAM J. Numer. Anal. 33(6), 2239鈥?253 (1996). doi:10.1137/S0036142994264705
    69. G. Larcher, A best lower bound for good lattice points. Monatsh. Math. 104, 45鈥?1 (1987). doi:10.1007/BF01540524
    70. G. Larcher, Nets obtained from rational functions over finite fields. Acta Arithmetica 63(1), 1鈥?3 (1993)
    71. G. Leobacher, F. Pillichshammer, Bounds for the weighted / L / p discrepancy and tractability of integration. J. Complexity 19(4), 529鈥?47 (2003). doi:10.1016/S0885-064X(03)00009-8
    72. W.-L. Loh, On the asymptotic distribution of scrambled net quadrature. Ann. Statist. 31(4), 1282鈥?324 (2003). doi:10.1214/aos/1059655914
    73. J.N. Lyness, Notes on lattice rules. Numerical integration and its complexity. J. Complexity 19(3), 321鈥?31 (2003). doi:10.1016/S0885-064X(03)00005-0
    74. J. Matou拧ek, On the / L 2-discrepancy for anchored boxes. J. Complexity 14(4), 527鈥?56 (1998). doi:10.1006/jcom.1998.0489
    75. J. Matou拧ek, / Geometric discrepancy. An illustrated guide. Algorithms and Combinatorics, vol. 18 (Springer, Berlin-Heidelberg-New York, 1999), p. 288
    76. H. Niederreiter, Existence of good lattice points in the sense of Hlawka. Monatsh. Math. 86, 203鈥?19 (1978). doi:10.1007/BF01659720
    77. H. Niederreiter, Pseudozufallszahlen und die Theorie der Gleichverteilung. (Pseudo-random numbers and the theory of uniform distribution). Sitzungsber. Abt. II 脰sterreich. Akad. Wiss. Math.-Naturwiss. Kl. 195, 109鈥?38 (1986)
    78. H. Niederreiter, Rational functions with partial quotients of small degree in their continued fraction expansion. Monatsh. Math. 103, 269鈥?88 (1987). doi:10.1007/BF01318069
    79. H. Niederreiter, Low-discrepancy and low-dispersion sequences. J. Number Theory 30(1), 51鈥?0 (1988). doi:10.1016/0022-314X(88)90025-X
    80. H. Niederreiter, Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J. 42(1), 143鈥?66 (1992)
    81. H. Niederreiter, / Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63 (SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992), p. 241
    82. H. Niederreiter, C. Xing, Low-discrepancy sequences and global function fields with many rational places. Finite Fields Appl. 2(3), 241鈥?73 (1996). doi:10.1006/ffta.1996.0016
    83. H. Niederreiter, C. Xing, Algebraic curves over finite fields with many rational points and their applications, in / Number theory, ed. by R.P. Bambah, (Birkh盲user. Trends in Mathematics, Basel, 2000), pp. 287鈥?00 CrossRef
    84. E. Novak, / Deterministic and stochastic error bounds in numerical analysis. Lecture Notes in Mathematics, vol. 1349 (Springer, Berlin, 1988), p. 113. doi:10.1007/BFb0079792
    85. E. Novak, H. Wo藕niakowski, When are integration and discrepancy tractable?, in / Foundations of computational mathematics. Conference, Oxford, GB, July 18鈥?8, 1999, ed. by Ronald A. DeVore, Lond. Math. Soc. Lect. Note Ser., vol. 284 (Cambridge University Press, Cambridge, 2001), pp. 211鈥?66
    86. E. Novak, H. Wo藕niakowski, / Tractability of Multivariate Problems. Volume I: Linear Information. EMS Tracts in Mathematics, vol. 6 (European Mathematical Society (EMS), Z眉rich, 2008), p. 384
    87. E. Novak, H. Wo藕niakowski, / L 2 / Discrepancy and Multivariate Integration., ed. by W.W.L. Chen, et al., Analytic number theory. Essays in honour of Klaus Roth on the occasion of his 80th birthday (Cambridge University Press, Cambridge, 2009), pp.聽359鈥?88
    88. E. Novak, H. Wo藕niakowski, / Tractability of Multivariate Problems. Volume II: Standard Information for Functionals. EMS Tracts in Mathematics, vol. 12 (European Mathematical Society (EMS), Z眉rich, 2010), p. 657
    89. E. Novak, H. Wo藕niakowski, / Tractability of Multivariate Problems. Volume III: Standard Information for Operators (European Mathematical Society (EMS), Z眉rich, 2012), p. 586. doi:10.4171/116
    90. D. Nuyens, R. Cools, Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. 75(254), 903鈥?20 (2006). doi:10.1090/S0025-5718-06-01785-6
    91. D. Nuyens, R. Cools, / Fast Component-by-Component Construction, A Reprise for Different Kernels, ed. by H. Niederreiter, et al., Monte Carlo and quasi-Monte Carlo methods 2004. Refereed proceedings of the sixth international conference on Monte Carlo and quasi-Monte Carlo methods in scientific computation, Juan-les-Pins, France, June 7鈥?0, 2004 (Springer, Berlin, 2006), pp.聽373鈥?87. doi:10.1007/3-540-31186-6
    92. D. Nuyens, R. Cools, Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complexity 22(1), 4鈥?8 (2006). doi:10.1016/j.jco.2005.07.002
    93. A.B. Owen, / Randomly Permuted (t,m,s)-Nets and (t,s)-Sequences. ed. by H. Niederreiter, et al., Monte Carlo and quasi-Monte Carlo methods in scientific computing. Proceedings of a conference at the University of Nevada, Las Vegas, Nevada, USA, June 23鈥?5, 1994 (Springer, Berlin, 1995). Lect. Notes Stat. 106, pp.聽299鈥?17
    94. A.B. Owen, Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34(5), 1884鈥?910 (1997). doi:10.1137/S0036142994277468
    95. A.B. Owen, Scrambled net variance for intergrals of smooth functions. Ann. Stat. 25(4), 1541鈥?562 (1997). doi:10.1214/aos/1031594731
    96. F. Pillichshammer, Polynomial Lattice Point Sets., in / Monte Carlo and Quasi-Monte Carlo Methods 2010, ed. by L. Plaskota, H. Wo藕niakowski, Springer Proceedings in Mathematics and Statistics, vol. 23 (Springer, Berlin, 2012), pp. 189鈥?10
    97. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, / Integrals and series. Vol. 1: Elementary functions. Vol. 2: Special functions. Transl. from the Russian by N. M. Queen. (Gordon & Breach Science Publishers, New York, 1986), p. 798
    98. K.F. Roth, On irregularities of distribution. Mathematika 1, 73鈥?9 (1954). doi:10.1112/S0025579300000541
    99. K.F. Roth, On irregularities of distribution. III. Acta Arithmetica 35, 373鈥?84 (1979)
    100. K.F. Roth, On irregularities of distribution. IV. Acta Arithmetica 37, 67鈥?5 (1980)
    101. W.M. Schmidt, Irregularities of distribution. VII. Acta Arithmetica 21, 45鈥?0 (1972)
    102. W.M. Schmidt, Irregularities of distribution. X., in / Number Theory and Algebra. Collect. Pap. dedic. H. B. Mann, A. E. Ross, O. Taussky-Todd (Academic Press, New York, 1977), pp. 311鈥?29
    103. V. Sinescu, S. Joe, / Good Lattice Rules with a Composite Number of Points Based on the Product Weighted Star Discrepancy, ed. by A. Keller, et al., Monte Carlo and quasi-Monte Carlo methods 2006. Selected papers based on the presentations at the 7th international conference 鈥楳onte Carlo and quasi-Monte Carlo methods in scientific computing鈥? Ulm, Germany, August 14鈥?8, 2006 (Springer, Berlin, 2008), pp.聽645鈥?58
    104. V. Sinescu, P. L鈥橢cuyer, / On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules, ed. by P. L鈥?Ecuyer, et al., Monte Carlo and quasi-Monte Carlo methods 2008. Proceedings of the 8th international conference Monte Carlo and quasi-Monte Carlo methods in scientific computing, Montr茅al, Canada, July 6鈥?1, 2008 (Springer, Berlin, 2009), pp.聽603鈥?16. doi:10.1007/978-3-642-04107-5_39
    105. M.M. Skriganov, Harmonic analysis on totally disconnected groups and irregularities of point distributions. J. Reine Angew. Math. 600, 25鈥?9 (2006). doi:10.1515/CRELLE.2006.085
    106. I.H. Sloan, S. Joe, / Lattice Methods for Multiple Integration. (Oxford Science Publications. Clarendon Press, Oxford, 1994), p. 239
    107. I.H. Sloan, A.V. Reztsov, Component-by-component construction of good lattice rules. Math. Comput. 71(237), 263鈥?73 (2002). doi:10.1090/S0025-5718-01-01342-4
    108. I.H. Sloan, F.Y. Kuo, S. Joe, Constructing randomly shifted lattice rules in weighted Sobolev spaces. SIAM J. Numer. Anal. 40(5), 1650鈥?665 (2002). doi:10.1137/S0036142901393942
    109. I.H. Sloan, F.Y. Kuo, S. Joe, On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces. Math. Comput. 71(240), 1609鈥?640 (2002). doi:10.1090/S0025-5718-02-01420-5
    110. I.H. Sloan, H. Wo藕niakowski, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complexity 14(1), 1鈥?3 (1998). doi:10.1006/jcom.1997.0463
    111. I.H. Sloan, H. Wo藕niakowski, Tractability of multivariate integration for weighted Korobov classes. J. Complexity 17(4), 697鈥?21 (2001). doi:10.1006/jcom.2001.0599
    112. I.M. Sobol, On the distribution of points in a cube and the approximate evaluation of integrals. Z. Vy膷isl. Mat. i Mat. Fiz. 7, 784鈥?02 (1967). doi:10.1016/0041-5553(67)90144-9
    113. K.B. Stolarsky, Sums of distances between points on a sphere. II. Proc. Am. Math. Soc. 41, 575鈥?82 (1973). doi:10.2307/2039137
    114. V.N. Temlyakov, Cubature formulas, discrepancy, and nonlinear approximation. Numerical integration and its complexity. J. Complexity 19(3), 352鈥?91 (2003). doi:10.1016/S0885-064X(02)00025-0
    115. R.R. Varshamov, The evaluation of signals in codes with correction of errors. Dokl. Akad. Nauk SSSR 117, 739鈥?41 (1957)
    116. I.F. 艩arygin, A lower estimate for the error of quadrature formulas for certain classes of functions. Zh. Vychisl. Mat. i Mat. Fiz. 3, 370鈥?76 (1963)
    117. H. Weyl, 脺ber die Gleichverteilung mod. Eins. Math. Ann. 77, 313鈥?52 (1916). (German)
    118. H. Wo藕niakowski, / Efficiency of Quasi-Monte Carlo Algorithms for High Dimensional Integrals, ed. by H. Niederreiter, et al., Monte Carlo and quasi-Monte Carlo methods 1998. Proceedings of a conference held at the Claremont Graduate Univ., Claremont, CA, USA, June 22鈥?6, 1998 (Springer, Berlin, 2000), pp.聽114鈥?36
    119. S.K. Zaremba, Some applications of multidimensional integration by parts. Ann. Poln. Math. 21, 85鈥?6 (1968)
  • 作者单位:Josef Dick (16)
    Friedrich Pillichshammer (17)

    16. School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW, 2052, Australia
    17. Institute for Financial Mathematics, University of Linz, Altenbergerstra脽e 69, 4040, Linz, Austria
  • ISSN:1617-9692
文摘
In this chapter we show the deep connections between discrepancy theory on the one hand and quasi-Monte Carlo integration on the other. Discrepancy theory was established as an area of research going back to the seminal paper by Weyl [117], whereas Monte Carlo (and later quasi-Monte Carlo) was invented in the 1940s by John von Neumann and Stanislaw Ulam to solve practical problems. The connection between these areas is well understood and will be presented here. We further include state of the art methods for quasi-Monte Carlo integration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700