Photoluminescence and electrical properties of Eu3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation
详细信息    查看全文
  • 作者:Xing-an Jiang ; Xiang-ping Jiang ; Chao Chen ; Na Tu…
  • 关键词:Aurivillius bismuth layered structure ; photoluminescence ; electrical properties ; multifunctional materials
  • 刊名:Frontiers of Materials Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:10
  • 期:1
  • 页码:31-37
  • 全文大小:865 KB
  • 参考文献:[1]Kreisel J, Alexe M, Thomas P A. A photoferroelectric material is more than the sum of its parts. Nature Materials, 2012, 11(4): 260CrossRef
    [2]Hwang S C, Lynch C S, McMeeking R M. Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metallurgica et Materialia, 1995, 43(5): 2073–2084CrossRef
    [3]Spaldin N A, Fiebig M. The renaissance of magnetoelectric multiferroics. Science, 2005, 309(5733): 391–392CrossRef
    [4]Lu H, Bark C W, Ojos D E, et al. Mechanical writing of ferroelectric polarization. Science, 2012, 336(6077): 59–61CrossRef
    [5]Wang X S, Xu C N, Yamada H, et al. Elecro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics. Advanced Materials, 2005, 17(10): 1254–1258CrossRef
    [6]Jaffe H, Berlincourt D A. Piezoelectric transducer materials. Proceedings of the IEEE, 1965, 53(10): 1372–1386CrossRef
    [7]Aurivillius B. Mixed bismuth oxides with layer lattices. Arkiv för Kemi, 1949, 1: 463–480
    [8]Park B H, Kang B S, Bu S D, et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 1999, 401(6754): 682–684CrossRef
    [9]Peng D F, Wang X S, Xu C N, et al. Bright upconversion emission, increased T c, enhanced ferroelectric and piezoelectric properties in Er-doped CaBi4Ti4O15 multifunctional ferroelectric oxides. Journal of the American Ceramic Society, 2013, 96(1): 184–190CrossRef
    [10]Bokolia R, Thakur O P, Rai V K, et al. Dielectric, ferroelectric and photoluminescence properties of Er3+-doped Bi4Ti3O12 ferroelectric ceramics. Ceramics International, 2015, 41(4): 6055–6066CrossRef
    [11]Chen H Z, Yang B, Sun Y, et al. Investigation on upconversion photoluminescence of Bi3TiNbO9:Er3+:Yb3+ thin films. Journal of Luminescence, 2011, 131(12): 2574–2578CrossRef
    [12]Ma Q, Zhou Y Y, Lu M K, et al. Synthesis and luminescence of pure and Eu3+-activated Aurivillius-type Bi3TiNbO9 nanophosphors. Materials Chemistry and Physics, 2009, 116(2–3): 315–318CrossRef
    [13]Volanti D P, Rosa L V, Paris E C, et al. The role of the Eu3+ ions in structure and photoluminescence properties of SrBi2Nb2O9 powders. Optical Materials, 2009, 31(6): 995–999CrossRef
    [14]Wei T, Zhao C Z, Zhou Q J, et al. Bright green upconversion emission and enhanced ferroelectric polarization in Sr1–1.5x Er x- Bi2Nb2O9. Optical Materials, 2014, 36(7): 1209–1212CrossRef
    [15]Li J L, Deng C Y, Cui R R. Photoluminescence properties of CaBi2Ta2O9:RE3+ (RE = Sm, Tb, and Tm) phosphors. Optics Communications, 2014, 326: 6–9CrossRef
    [16]Cui R R, Deng C Y, Gong X Y, et al. Luminescent performance of rare earths doped CaBi2Ta2O9 phosphor. Journal of Rare Earths, 2013, 31(6): 546–550CrossRef
    [17]Sailaja S, Reddy B S. Synthesis, structural and photoluminescence properties of RE3+ (RE = Pr, Tm): (MgCa)2Bi4Ti5O20 ceramics. Ferroelectrics (Letters Section), 2011, 38(4–6): 94–100CrossRef
    [18]Sun H Q, Zhang Q W, Wang X S, et al. Bi0.5Na0.5TiO3:Eu3+: An intense blue converting red phosphor. Materials Letters, 2014, 131: 164–166CrossRef
    [19]Francis L T, Rao P P, Thomas M, et al. New orange-red emitting phosphor La3NbO7:Eu3+ under blue excitation. Materials Letters, 2012, 81: 142–144CrossRef
    [20]Wei T, Zhao C Z, Li C P, et al. Photoluminescence and ferroelectric properties in Eu-doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectric ceramics. Journal of Alloys and Compounds, 2013, 577: 728–733CrossRef
    [21]Chen D Q, Yu Y L, Huang P, et al. Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode. Acta Materialia, 2010, 58(8): 3035–3041CrossRef
    [22]Neeraj S, Kijima N, Cheetham A K. Novel red phosphors for solid state lighting; the system BixLn1–x VO4; Eu3+/Sm3+ (Ln = Y, Gd). Solid State Communications, 2004, 131(1): 65–69CrossRef
    [23]Chan T S, Kang C C, Liu R S, et al. Combinatorial study of the optimization of Y2O3:Bi,Eu red phosphors. Journal of Combinatorial Chemistry, 2007, 9(3): 343–346CrossRef
    [24]Kuo T W, Huang C H, Chen T M. Novel yellowish-orange Sr8Al12O24S2:Eu2+ phosphor for application in blue light-emitting diode based white LED. Optics Express, 2010, 18(S2): A231–A236CrossRef
    [25]Ruan K B, Wu C H, Zhou H, et al. Optical characteristics of Bi4–x EuxTi3O12 ferroelectric thin films on fused silica substrates. Journal of Electroceramics, 2012, 29(1): 37–41CrossRef
    [26]Cui R R, Deng C Y, Gong X Y, et al. Luminescence properties of Eu3+ doped CaBi2Ta2O9 bismuth layered-structure ferroelectrics. Materials Research Bulletin, 2013, 48(10): 4301–4306CrossRef
    [27]Villafuerte-Castrejón M E, Camacho-Alanís F, González F, et al. Luminescence and structural study of Bi4–x EuxTi3O12 solid solution. Journal of the European Ceramic Society, 2007, 27(2–3): 545–549CrossRef
    [28]Ofelt G S. Intensities of crystal spectra of rare-earth ions. Journal of Chemical Physics, 1962, 37(3): 511CrossRef
    [29]Shimakawa Y, Kubo Y, Nakagawa Y, et al. Crystal structure and ferroelectric properties of ABi2Ta2O9 (A = Ca, Sr, and Ba). Physical Review B: Condensed Matter and Materials Physics, 2000, 61(10): 6559–6564CrossRef
    [30]Kennedy B J, Zhou Q D, Ismunandar, et al. Cation disorder and phase transitions in the four-layer ferroelectric Aurivillius phases ABi4Ti4O15 (A = Ca, Sr, Ba, Pb). Journal of Solid State Chemistry, 2008, 181(6): 1377–1386CrossRef
    [31]Du H L, Shi X. Dielectric and piezoelectric properties of bariummodified Aurivillius-type Na0.5Bi4.5Ti4O15. Journal of Physics and Chemistry of Solids, 2011, 72(11): 1279–1283CrossRef
    [32]Ang C, Yu Z, Cross L E. Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Physical Review B: Condensed Matter and Materials Physics, 2000, 62(1): 228–236CrossRef
    [33]Dash U, Sahoo S, Chaudhuri P, et al. Electrical properties of bulk and nano Li2TiO3 ceramics: A comparative study. Journal of Advanced Ceramics, 2014, 3(2): 89–97CrossRef
    [34]Rehman F, Li J B, Dou Y K, et al. Dielectric relaxations and electrical properties of Aurivillius Bi3.5La0.5Ti2Fe0.5Nb0.5O12 ceramics. Journal of Alloys and Compounds, 2016, 654: 315–320CrossRef
    [35]Ehara S, Muramatsu K, Shimazu M, et al. Dielectric properties of Bi4Ti3O12 below the Curie temperature. Japanese Journal of Applied Physics, 1981, 20(5): 877–881CrossRef
    [36]Zhou Z Y, Dong X L, Yan H X, et al. Doping effects on the electrical conductivity of bismuth layered Bi3TiNbO9-based ceramics. Journal of Applied Physics, 2006, 100(4): 044112CrossRef
    [37]Shi K, Peng L, LiMJ, et al. Structural distortion, phonon behavior and electronic transition of Aurivillius layered ferroelectric CaBi2Nb2–x WxO9 ceramics. Journal of Alloys and Compounds, 2015, 653: 168–174CrossRef
    [38]Rafiq M A, Rafiq M N, Saravanan K V. Dielectric and impedance spectroscopic studies of lead-free barium–calcium–zirconium–titanium oxide ceramics. Ceramics International, 2015, 41(9): 11436–11444CrossRef
  • 作者单位:Xing-an Jiang (1)
    Xiang-ping Jiang (1)
    Chao Chen (1)
    Na Tu (1)
    Yun-jing Chen (1)
    Ban-chao Zhang (1)

    1. Jiangxi Key Laboratory of Advanced Ceramic Materials, Department of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333001, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science
    Chemistry
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-0268
文摘
Na0.5Bi4.5−x Eu x Ti4O15 (NBT- x Eu3+) ceramics with x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.40 were prepared by conventional ceramics processing. NBT-0.25Eu3+ ceramics show the strongest red and orange emissions corresponding to the 5D0 → 7F2 (617 nm) and 5D0 → 7F1 (596 nm) transitions, respectively. The strongest excitation band around 465 nm matches well with the emission wavelength of commercial InGaN-based blue LED chip, indicating that Eu3+-doped NBT ceramics may be used as potential environmental friendly red-orange phosphor for W-LEDs application. As an inherent ferroelectric and piezoelectric material, the electrical properties of this potentially multifunctional electro-optical material have been also studied. The introduction of Eu3+ distinctly increased the Curie temperature (T C ) of NBT- x Eu3+ ceramics from 640°C to 711°C as x ranges from 0 to 0.40. For higher temperature applications, the electrical conductivity was also investigated. The conduction of charge carriers in high-temperature range originates from the conducting electrons from the ionization of oxygen vacancies. High T C and low tanδ makes Eu3+-doped NBTceramic also suitable for high temperature piezoelectric sensor applications and electro-optical integration. Keywords Aurivillius bismuth layered structure photoluminescence electrical properties multifunctional materials

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700