Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks
详细信息    查看全文
  • 作者:Su-Su Huang ; Li Liu ; Li-Ping Mei ; Jia-Ying Zhou ; Fei-Ying Guo
  • 关键词:Metformin ; Bimetallic structures ; Cyclic voltammetry ; High ; resolution TEM ; Annular dark ; field scanning TEM
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:183
  • 期:2
  • 页码:791-797
  • 全文大小:2,044 KB
  • 参考文献:1.Yang S, Xia B, Zeng X, Luo S, Wei W, Liu X (2010) Fabrication of DNA functionalized carbon nanotubes/Cu2+ complex by one-step electrodeposition and its sensitive determination of nitrite. Anal Chim Acta 667:57CrossRef
    2.Wang P, Mai Z, Dai Z, Li Y, Zou X (2009) Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosens Bioelectron 24:3242CrossRef
    3.Afkhami A, Soltani-Felehgari F, Madrakian T, Ghaedi H (2014) Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens Bioelectron 51:379CrossRef
    4.Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2014) A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal B 148–149:22CrossRef
    5.Mirvish SS (1995) Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett 93:17CrossRef
    6.Zhou L, Wang J-P, Gai L, Li D-J, Li Y-B (2013) An amperometric sensor based on ionic liquid and carbon nanotube modified composite electrode for the determination of nitrite in milk. Sensors Actuators B Chem 181:65CrossRef
    7.Aydın A, Ercan Ö, Taşcıoğlu S (2005) A novel method for the spectrophotometric determination of nitrite in water. Talanta 66:1181CrossRef
    8.Liu H, Yang G, Abdel-Halim E, Zhu J-J (2013) Highly selective and ultrasensitive detection of nitrite based on fluorescent gold nanoclusters. Talanta 104:135CrossRef
    9.Ito K, Takayama Y, Makabe N, Mitsui R, Hirokawa T (2005) Ion chromatography for determination of nitrite and nitrate in seawater using monolithic ODS columns. J Chromatogr A 1083:63CrossRef
    10.Sudarvizhi A, Siddiqha ZA, Pandian K (2014) Single step synthesis of graphene oxide protected silver nanoparticles using aniline as reducing agent and study its application on electrocatalytic detection of nitrite in food samples. J Chem Applied Biochem 1:101
    11.Salimi A, Kurd M, Teymourian H, Hallaj R (2014) Highly sensitive electrocatalytic detection of nitrite based on SiC nanoparticles/amine terminated ionic liquid modified glassy carbon electrode integrated with flow injection analysis. Sensors Actuators B Chem 205:136CrossRef
    12.Marlinda A, Pandikumar A, Yusoff N, Huang N, Lim H (2015) Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182:1113CrossRef
    13.Chen K-J, Chandrasekara Pillai K, Rick J, Pan C-J, Wang S-H, Liu C-C, Hwang B-J (2012) Bimetallic PtM (M = Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosens Bioelectron 33:120CrossRef
    14.Wang J, Zhou H, Fan D, Zhao D, Xu C (2015) A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite. Microchim Acta 182:1055CrossRef
    15.Dao V-D, Choi Y, Yong K, Larina LL, Shevaleevskiy O, Choi H-S (2015) A facile synthesis of bimetallic AuPt nanoparticles as a new transparent counter electrode for quantum-dot-sensitized solar cells. J Power Sources 274:831CrossRef
    16.Garcia T, Murillo R, Agouram S, Dejoz A, Lazaro MJ, Torrente-Murciano L, Solsona B (2012) Highly dispersed encapsulated AuPd nanoparticles on ordered mesoporous carbons for the direct synthesis of H2O2 from molecular oxygen and hydrogen. Chem Commun 48:5316CrossRef
    17.Wang G, Xiao L, Huang B, Ren Z, Tang X, Zhuang L, Lu J (2012) AuCu intermetallic nanoparticles: surfactant-free synthesis and novel electrochemistry. J Mater Chem 22:15769CrossRef
    18.Xu Z, Lai E, Shao-Horn Y, Hamad-Schifferli K (2012) Compositional dependence of the stability of AuCu alloy nanoparticles. Chem Commun 48:5626CrossRef
    19.Shibu Joseph ST, Ipe BI, Pramod P, Thomas KG (2006) Gold nanorods to nanochains: Mechanistic investigations on their longitudinal assembly using α,ω-alkanedithiols and interplasmon coupling. J Phys Chem B 110:150CrossRef
    20.Wang N, Han Y, Xu Y, Gao C, Cao X (2015) Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires. Anal Chem 87:457CrossRef
    21.Dang Y-Q, Li H-W, Wang B, Li L, Wu Y (2009) Selective detection of trace Cr3+ in aqueous solution by using 5,5′-dithiobis (2-nitrobenzoic acid)-modified gold nanoparticles. ACS Appl Mater Inter 1:1533CrossRef
    22.Khanal S, Bhattarai N, McMaster D, Bahena D, Velazquez-Salazar JJ, Jose-Yacaman M (2014) Highly monodisperse multiple twinned AuCu-Pt trimetallic nanoparticles with high index surfaces. Phys Chem Chem Phys 16:16278CrossRef
    23.Ding X, Zou Y, Jiang J (2012) Au–Cu2S heterodimer formation via oxidization of AuCu alloy nanoparticles and in situ formed copper thiolate. J Mater Chem 22:23169CrossRef
    24.Wi J-S, Tominaka S, Uosaki K, Nagao T (2012) Porous gold nanodisks with multiple internal hot spots. Phys Chem Chem Phys 14:9131CrossRef
    25.Jiang Z, Zhang Q, Zong C, Liu B-J, Ren B, Xie Z, Zheng L (2012) Cu–Au alloy nanotubes with five-fold twinned structure and their application in surface-enhanced raman scattering. J Mater Chem 22:18192CrossRef
    26.He R, Wang Y-C, Wang X, Wang Z, Liu G, Zhou W, Wen L, Li Q, Wang X, Chen X (2014) Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties. Nat Commun 5:4327
    27.Luo M-F, Fang P, He M, Xie Y-L (2005) In situ XRD, raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J Mol Catal A Chem 239:243CrossRef
    28.Li X-R, Li X-L, Xu M-C, Xu J-J, Chen H-Y (2014) Gold nanodendrities on graphene oxide nanosheets for oxygen reduction reaction. J Mater Chem A 2:1697CrossRef
    29.Goswami N, Giri A, Bootharaju M, Xavier PL, Pradeep T, Pal SK (2011) Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal Chem 83:9676CrossRef
    30.Wang W, Leng F, Zhan L, Chang Y, Yang XX, Lan J, Huang CZ (2014) One-step prepared fluorescent copper nanoclusters for reversible pH-sensing. Analyst 139:2990CrossRef
    31.Wei W, Lu Y, Chen W, Chen S (2011) One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J Am Chem Soc 133:2060CrossRef
    32.Fang J, Chandrasekharan P, Liu X-L, Yang Y, Lv Y-B, Yang C-T, Ding J (2014) Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging. Biomaterials 35:1636CrossRef
    33.Zhang Q-L, Ju K-J, Huang X-Y, Wang A-J, Wei J, Feng J-J (2015) Metformin mediated facile synthesis of AuPt alloyed nanochains with enhanced electrocatalytic properties for alcohol oxidation. Electrochim Acta 182:305CrossRef
    34.Fu G, Wu K, Lin J, Tang Y, Chen Y, Zhou Y, Lu T (2013) One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J Phys Chem C 117:9826CrossRef
    35.Zhao L, Jiang D, Cai Y, Ji X, Xie R, Yang W (2012) Tuning the size of gold nanoparticles in the citrate reduction by chloride ions. Nanoscale 4:5071CrossRef
    36.Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. small 4:310CrossRef
    37.Wang H, Dong Z, Na C (2013) Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p-nitrophenol. ACS Sustain Chem Eng 1:746
    38.Yang S, Zeng X, Liu X, Wei W, Luo S, Liu Y, Liu Y (2010) Electrocatalytic reduction and sensitive determination of nitrite at nano-copper coated multi-walled carbon nanotubes modified glassy carbon electrode. J Electroanal Chem 639:181CrossRef
    39.Biniak S, Pakuła M, Szymański GS, Świątkowski A (1999) Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of copper(ii) ions from aqueous solution. Langmuir 15:6117CrossRef
    40.Sabzi R (2007) Amperometric detection of nitrite on glassy carbon electrode modified with cobalt nitroprusside. Port Electrochim Acta 25:383CrossRef
    41.Brylev O, Sarrazin M, Roué L, Bélanger D (2007) Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochim Acta 52:6237CrossRef
    42.Huang X, Li Y, Chen Y, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly (3-methylthiophene) composites coated glassy carbon electrode. Sensors Actuators B Chem 134:780CrossRef
    43.Li S-J, Zhao G-Y, Zhang R-X, Hou Y-L, Liu L, Pang H (2013) A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Microchim Acta 180:821CrossRef
    44.Meng Z, Liu B, Zheng J, Sheng Q, Zhang H (2011) Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation. Microchim Acta 175:251CrossRef
    45.Zhang Y, Luo L, Ding Y, Li L (2009) Electrochemical determination of nitrite in water samples using a glassy carbon electrode modified with didodecyldimethylammonium bromide. Microchim Acta 167:123CrossRef
    46.Li Y-F, Lv J-J, Zhang M, Feng J-J, Li F-F, Wang A-J (2015) A simple and controlled electrochemical deposition route to urchin-like Pd nanoparticles with enhanced electrocatalytic properties. J Electroanal Chem 738:1CrossRef
  • 作者单位:Su-Su Huang (1)
    Li Liu (2)
    Li-Ping Mei (1)
    Jia-Ying Zhou (1)
    Fei-Ying Guo (1)
    Ai-Jun Wang (1)
    Jiu-Ju Feng (1)

    1. College of Chemistry and Life Science, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
    2. Jinhua Agricultural Products Quality Comprehensive Supervision and Inspection Center, Yongkang St. 209, Jinhua, 321017, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
Bimetallic gold-copper nanochain networks (AuCu NCNs) were prepared by a single-step wet-chemical approach using metformin as a growth-directing agent. The formation mechanism was investigated in detail, and the AuCu NCNs were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The nanocrystals were deposited on glassy carbon electrode and this resulted in a highly sensitive sensor for nitrite. Features include a low working potential (best at 0.684 V vs. SCE), fair sensitivity (17.55 μA mM−1), a wide linear range (0.01 to 4.0 mM), a low detection limit (0.2 μM, S/N = 3), and superior selectivity as compared to other sensors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700