Single-molecule analysis of lead(II)-binding aptamer conformational changes in an α-hemolysin nanopore, and sensitive detection of lead(II)
详细信息    查看全文
  • 作者:Hai-Yan Wang ; Ze-Yang Song ; Hui-Sheng Zhang ; Si-Ping Chen
  • 关键词:DNA duplex ; Cation ; DNA interaction ; G4 aptamer ; Open pore current ; Current blockage ; Folding ; unfolding kinetics
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:183
  • 期:3
  • 页码:1003-1010
  • 全文大小:1,619 KB
  • 参考文献:1.Kasianowicz J, Brandin E, Branton D, Deamer D (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93:13770CrossRef
    2.Zhang X, Zhang J, Ying Y-L, Tian H, Long Y-T (2014) Single molecule analysis of light-regulated RNA: spiropyran interactions. Chem Sci 5:2642CrossRef
    3.Wang H-Y, Gu Z, Cao C, Wang J, Long Y-T (2013) Analysis of a single α-synuclein fibrillation by the interaction with a protein nanopore. Anal Chem 85:8254CrossRef
    4.Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265CrossRef
    5.Reiner JE, Balijepalli A, Robertson JW, Drown BS, Burden DL, Kasianowicz JJ (2012) The effects of diffusion on an exonuclease/nanopore-based DNA sequencing engine. J Chem Phy 137:214903CrossRef
    6.Kumar S, Tao C, Chien M, Hellner B, Balijepalli A, Robertson JW, Li Z, Russo JJ, Reiner JE, Kasianowicz JJ (2012) PEG-labeled nucleotides and nanopore detection for single molecule DNA sequencing by synthesis. Sci Rep 2:684
    7.Reiner JE, Balijepalli A, Robertson JW, Campbell J, Suehle J, Kasianowicz JJ (2012) Disease detection and management via single nanopore-based sensors. Chem Rev 112:6431CrossRef
    8.Ying Y-L, Li D-W, Liu Y, Dey SK, Kraatz H-B, Long Y-T (2012) Recognizing the translocation signals of individual peptide–oligonucleotide conjugates using an α-hemolysin nanopore. Chem Commun 48:8784CrossRef
    9.Ding Y, Fleming AM, Burrows CJ (2015) α-hemolysin nanopore studies reveal strong interactions between biogenic polyamines and DNA hairpins. Microchim Acta. doi:10.​1007/​s00604-015-1516-6
    10.Kasianowicz JJ, Henrickson SE, Weetall HH, Robertson B (2001) Simultaneous multianalyte detection with a nanometer-scale pore. Anal Chem 73:2268CrossRef
    11.Henrickson SE, Misakian M, Robertson B, Kasianowicz JJ (2000) Driven DNA transport into an asymmetric nanometer-scale pore. Phys Rev Lett 85:3057CrossRef
    12.Wen S, Zeng T, Liu L, Zhao K, Zhao Y, Liu X, Wu H-C (2011) Highly sensitive and selective DNA-based detection of mercury (II) with α-hemolysin nanopore. J Am Chem Soc 133:18312CrossRef
    13.Song L, Hobaugh M, Shustak C, Cheley S, Bayley H, Gouaux J (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859CrossRef
    14.Shim JW, Gu L-Q (2008) Encapsulating a single G-quadruplex aptamer in a protein nanocavity. J Phy Chem B 112:8354CrossRef
    15.Li T, Liu L, Li Y, Xie J, Wu H-C (2015) A universal strategy for aptamer-based nanopore sensing through host–guest interactions inside α-hemolysin. Angew Chem Int Ed 54:7568CrossRef
    16.Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467CrossRef
    17.Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505CrossRef
    18.Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 55:564CrossRef
    19.Jing N, Rando RF, Pommier Y, Hogan ME (1997) Ion selective folding of loop domains in a potent anti-HIV oligonucleotide. Biochemistry 36:12498CrossRef
    20.Smirnov I, Shafer RH (2000) Lead is unusually effective in sequence-specific folding of DNA. J Mol Biol 296:1CrossRef
    21.Liu W, Zhu H, Zheng B, Cheng S, Fu Y, Li W, Lau T-C, Liang H (2012) Kinetics and mechanism of G-quadruplex formation and conformational switch in a G-quadruplex of PS2. M induced by Pb2+. Nucleic Acids Res 40:4229CrossRef
    22.Kotch FW, Fettinger JC, Davis JT (2000) A lead-filled G-quadruplex: insight into the G-quartet's selectivity for Pb2+ over K+. Org Lett 2:3277CrossRef
    23.Shannon RT (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr 32:751CrossRef
    24.Smirnov IV, Kotch FW, Pickering IJ, Davis JT, Shafer RH (2002) Pb EXAFS studies on DNA quadruplexes: identification of metal ion binding site. Biochemistry 41:12133CrossRef
    25.Li T, Dong S, Wang E (2010) A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity. J Am Chem Soc 132:13156CrossRef
    26.Wang H-Y, Ying Y-L, Li Y, Kraatz B, Long Y-T (2011) Nanopore analysis of β-amyloid peptide aggregation transition induced by small molecules. Anal Chem 83:1746CrossRef
    27.Hatlo MM, Panja D, van Roij R (2011) Translocation of DNA molecules through nanopores with salt gradients: the role of osmotic flow. Phys Rev Lett 107:68101CrossRef
    28.Wanunu M, Morrison W, Rabin Y, Grosberg AY, Meller A (2010) Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol 5:160CrossRef
    29.Kowalczyk SW, Wells DB, Aksimentiev A, Dekker C (2012) Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett 12:1038CrossRef
    30.Ying YL, Wang HY, Sutherland TC, Long YT (2011) Monitoring of an ATP-binding aptamer and its conformational changes using an α-hemolysin nanopore. Small 7:87CrossRef
    31.Vercoutere W, Winters-Hilt S, Olsen H, Deamer D, Haussler D, Akeson M (2001) Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat Biotechnol 19:248CrossRef
    32.Wang Y, Zheng D, Tan Q, Wang MX, Gu L-Q (2011) Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nanotechnol 6:668CrossRef
    33.Henrickson ES, DiMarzio AE, Wang Q, Stanford MV, Kasianowicz JJ (2010) Probing single nanometer-scale pores with polymeric molecular rulers. J Chem Phys 132:135101CrossRef
    34.Jin Q, Fleming AM, Burrows CJ, White HS (2012) Unzipping kinetics of duplex DNA containing oxidized lesions in an α-hemolysin nanopore. J Am Chem Soc 134:11006CrossRef
    35.Meller A, Nivon L, Brandin E, Golovchenko J, Branton D (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci U S A 97:1079CrossRef
    36.Hardin CC, Perry GA, White K (2001) Thermodynamic and kinetic characterization of the dissociation and assembly of quadruplex nucleic acids. Biopolymers 56:147CrossRef
    37.DeGuzman VS, Lee CC, Deamer DW, Vercoutere WA (2006) Sequence-dependent gating of an ion channel by DNA hairpin molecules. Nucleic Acids Res 34:6425CrossRef
    38.Yang C, Liu L, Zeng T, Yang D, Yao Z, Zhao Y, Wu H-C (2013) Highly sensitive simultaneous detection of lead(II) and barium(II) with G-quadruplex DNA in α-hemolysin nanopore. Anal Chem 85:7302CrossRef
    39.Shim JW, Tan Q, Gu L-Q (2009) Single-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity. Nucleic Acids Res 37:972CrossRef
  • 作者单位:Hai-Yan Wang (1)
    Ze-Yang Song (1)
    Hui-Sheng Zhang (1)
    Si-Ping Chen (1)

    1. Shenzhen Key Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, 3688 Nanhai Road, Shenzhen, 508060, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
The α-hemolysin (αHL) nanopore is capable of analyzing DNA duplex and DNA aptamer as they can be electrophoretically driven into the vestibule from the cis entrance. The current study describes the competitive interaction induced by Pb2+ that changes the secondary structure of DNA duplex in asymmetrical electrolyte solution. DNA duplex formed by the partial complementary DNA and DNA aptamer sequence produced unzipping blockages with the dwell unzipping time lasting 2.84 ± 0.7 ms. By cation-DNA interaction with Pb2+, the DNA duplex will unwind and then form Pb2+-stabilized-DNA aptamer, which will be captured and unfolded in vestibule. The pore conductance were reduced to 54 % and 94 % with mean dwell unfolding times of 165 ± 12 ms. The competitive behavior between Pb2+ and single-strand DNA was further utilized to detect Pb2+ in solution with a detection limit of 0.5 nM. This nanopore platform also provides a powerful tool for studying the cation-DNA interactions in DNA aptamer conformational changes. Thus, the results drawn from these studies provide insights into the applications of α-hemolysin nanopore as a molecular sieve to different DNA secondary structure in future application of nanopore analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700