Construction of allitol synthesis pathway by multi-enzyme coexpression in Escherichia coli and its application in allitol production
详细信息    查看全文
  • 作者:Yueming Zhu ; Hongyi Li ; Pingping Liu…
  • 关键词:Allitol ; Multi ; enzyme coupling pathway ; Cofactor recycling system ; Whole ; cell biotransformation
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:42
  • 期:5
  • 页码:661-669
  • 全文大小:708 KB
  • 参考文献:1. B?umchen, C, Bringer-Meyer, S (2007) Expression of glf Z.m . increases d-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum. Appl Microbiol Biotechnol 76: pp. 545-552 CrossRef
    2. Chan, HC, Zhu, Y, Hu, Y, Ko, TP, Huang, CH, Ren, F, Chen, CC, Ma, Y, Guo, RT, Sun, Y (2012) Crystal structures of d-psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars. Protein Cell 3: pp. 123-131 CrossRef
    3. Chandrasekhar B (2010) Synthesis of some monocyclic and bicyclic polyhydroxy nitrogen heterocyclic compounds (Azasugars). PhD Thesis, Indian Institute of Chemical Technology, Hyderabad
    4. Han, W, Zhu, Y, Men, Y, Yang, J, Liu, C, Sun, Y (2014) Production of allitol from d-psicose by a novel isolated strain of Klebsiella oxytoca G4A4. J Basic Microbiol 53: pp. 1-7
    5. Ishida, Y, Kamiya, T, Itoh, H, Kimura, Y, Izumori, K (1997) Cloning and characterization of the d-tagatose 3-epimerase gene from Pseudomonas cichorii ST-24. J Ferment Bioeng 83: pp. 529-534 CrossRef
    6. Itoh, H, Sato, T, Izumori, K (1995) Preparation of d-psicose from d-fructose by immobilized d-tagatose 3-epimerase. J Ferment Bioeng 80: pp. 101-103 CrossRef
    7. Izumori, K (2006) Izumoring: a strategy for bioproduction of all hexoses. J Biotechnol 124: pp. 717-722 CrossRef
    8. Kataoka, M, Yamamoto, K, Kawabata, H, Wada, M, Kita, K, Yanase, H, Shimizu, S (1999) Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 51: pp. 486-490 CrossRef
    9. Kaup, B, Bringer-Meyer, S, Sahm, H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64: pp. 333-339 CrossRef
    10. Kim, HJ, Hyun, EK, Kim, YS, Lee, YJ, Oh, DK (2006) Characterization of an Agrobacterium tumefaciens d-psicose 3-epimerase that converts d-fructose to d-psicose. Appl Environ Microbiol 72: pp. 981-985 CrossRef
    11. Kizaki, N, Yasohara, Y, Hasegawa, J, Wada, M, Kataoka, M, Shimizu, S (2001) Synthesis of optically pure ethyl(S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 55: pp. 590-595 CrossRef
    12. Kornberg, HL, Lambourne, LTM, Sproul, AA (2000) Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli. Proc Natl Acad Sci USA 97: pp. 1808-1812 CrossRef
    13. Mu, W, Zhang, W, Feng, Y, Jiang, B, Zhou, L (2012) Recent advances on applications and biotechnological production of d-psicose. Appl Microbiol Biotechnol 94: pp. 1461-1467 CrossRef
    14. Muniruzzaman, S, Kunihisa, Y, Ichiraku, K, Izumori, K (1995) Purification and characterization of a ribitol dehydrogenase from Enterobacter agglomerans strain 221e. J Ferment Bioeng 79: pp. 496-498 CrossRef
    15. Muniruzzaman, S, Tokunaga, H, Izumori, K (1995) Conversion of d-psicose to allitol by Enterobacter agglomerans strain 221e. J Ferment Bioeng 79: pp. 323-327 CrossRef
    16. Parker, C, Barnell, WO, Snoep, JL, Ingram, LO, Conway, T (1995) Characterization of the Zymomonas mobilis glucose gacilitator gene product (glf) in r
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Chemistry
    Biotechnology
    Genetic Engineering
    Biochemistry
    Bioinformatics
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1476-5535
文摘
An engineered strain for the conversion of d-fructose to allitol was developed by constructing a multi-enzyme coupling pathway and cofactor recycling system in Escherichia coli. d-Psicose-3-epimerase from Ruminococcus sp. and ribitol dehydrogenase from Klebsiella oxytoca were coexpressed to form the multi-enzyme coupling pathway for allitol production. The cofactor recycling system was constructed using the formate dehydrogenase gene from Candida methylica for continuous NADH supply. The recombinant strain produced 10.62?g/l allitol from 100?mM d-fructose. To increase the intracellular concentration of the substrate, the glucose/fructose facilitator gene from Zymomonas mobilis was incorporated into the engineered strain. The results showed that the allitol yield was enhanced significantly to 16.53?g/l with a conversion rate of 92?%. Through optimizing conversion conditions, allitol was produced effectively on a large scale by the whole-cell biotransformation system; the yield reached 48.62?g/l when 500?mM d-fructose was used as the substrate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700