Hindlimb-unloading suppresses B cell population in the bone marrow and peripheral circulation associated with OPN expression in circulating blood cells
详细信息    查看全文
  • 作者:Yoichi Ezura (1) (2)
    Junji Nagata (1)
    Masashi Nagao (1)
    Hiroaki Hemmi (1) (3)
    Tadayoshi Hayata (1)
    Susan Rittling (4)
    David T. Denhardt (5)
    Masaki Noda (1) (2) (6) (7)

    1. Department of Molecular Pharmacology
    ; Medical Research Institute ; Tokyo Medical and Dental University ; 5-45 Yushima 1-Chome ; Bunkyo-ku ; Tokyo ; 113-8510 ; Japan
    2. Hard Tissue Genome Research Center
    ; TMDU ; Tokyo ; Japan
    3. Medical Top Track Fellow Program (MTT)
    ; TMDU ; Tokyo ; Japan
    4. The Forsyth Institute
    ; The Fenway ; Boston ; MA ; 02115 ; USA
    5. Department of Cell Biology and Neuroscience
    ; Rutgers University ; Piscataway ; NJ ; 08854 ; USA
    6. Global Center of Excellence (GCOE) Program
    ; International Research Center for Molecular Science in Tooth and Bone Diseases ; Tokyo ; Japan
    7. Integrated Action Initiative in JSPS Core to Core Program
    ; Tokyo ; Japan
  • 关键词:Osteopontin ; Tail ; suspension ; Hindlimb unloading ; PBMC ; Lymphocyte fraction
  • 刊名:Journal of Bone and Mineral Metabolism
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:33
  • 期:1
  • 页码:48-54
  • 全文大小:570 KB
  • 参考文献:1. Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92:1367鈥?377 CrossRef
    2. Ishijima M, Rittling SR, Yamashita T, Tsuji K, Kurosawa H, Nifuji A, Denhardt DT, Noda M (2001) Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med 193:399鈥?04 CrossRef
    3. Kondo H, Nifuji A, Takeda S, Ezura Y, Rittling SR, Denhardt DT, Nakashima K, Karsenty G, Noda M (2005) Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J Biol Chem 280:30192鈥?0200 CrossRef
    4. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514鈥?20 CrossRef
    5. Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T, Shibata S, Yoshida Y, Gu Z, Kimura A, Ma C, Xu C, Bando W, Fujita K, Shinomiya K, Hirai T, Asou Y, Enomoto M, Okano H, Okawa A, Itoh H (2013) Sema3A regulates bone-mass accrual through sensory innervations. Nature 497:490鈥?93 CrossRef
    6. Nagao M, Nagao M, Feinstein TN, Ezura Y, Hayata T, Notomi T, Saita Y, Hanyu R, Hemmi H, Izu Y, Takeda S, Wang K, Rittling S, Nakamoto T, Kaneko K, Kurosawa H, Karsenty G, Denhardt DT, Vilardaga JP, Noda M (2011) Sympathetic control of bone mass regulated by osteopontin. Proc Natl Acad Sci USA 108:17767鈥?7772 CrossRef
    7. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407鈥?21 CrossRef
    8. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227鈥?30 CrossRef
    9. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231鈥?35 CrossRef
    10. Ulrich D, van Rietbergen B, Laib A, Ruegsegger P (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55鈥?0 CrossRef
    11. Ishijima M, Ezura Y, Tsuji K, Rittling SR, Kurosawa H, Denhardt DT, Emi M, Nifuji A, Noda M (2006) Osteopontin is associated with nuclear factor kB gene expression during tail-suspension-induced bone loss. Exp Cell Res 312:3075鈥?083 CrossRef
    12. Patarca R, Wei FY, Singh P, Morasso MI, Cantor H (1989) Dysregulated expression of the T cell cytokine Eta-1 in CD4-8-lymphocytes during the development of murine autoimmune disease. J Exp Med 170:145 CrossRef
    13. Yumoto K, Ishijima M, Rittling SR, Tsuji K, Tsuchiya Y, Kon S, Nifuji A, Uede T, Denhardt DT, Noda M (2002) Osteopontin deficiency protects joints against destruction in anti-type II collagen antibody-induced arthritis in mice. Proc Natl Acad Sci USA 99:4556鈥?561 CrossRef
    14. Bertola A, Deveaux V, Bonnafous S, Rousseau D, Anty R, Wakkach A, Dahman M, Tordjman J, Cl茅ment K, McQuaid SE, Frayn KN, Huet PM, Gugenheim J, Lotersztajn S, Le Marchand-Brustel Y, Tran A, Gual P (2009) Elevated expression of osteopontin may be related to adipose tissue macrophage accumulation and liver steatosis in morbid obesity. Diabetes 58:125鈥?33 CrossRef
    15. Kuznetsov SA, Riminucci M, Ziran N, Tsutsui TW, Corsi A, Calvi L, Kronenberg HM, Schipani E, Robey PG, Bianco P (2004) The interplay of osteogenesis and hematopoiesis: expression of a constitutively active PTH/PTHrP receptor in osteogenic cells perturbs the establishment of hematopoiesis in bone and of skeletal stem cells in the bone marrow. J Cell Biol 167:1113鈥?122 CrossRef
    16. Dhabhar FS, Miller AH, McEwen BS, Spencer RL (1995) Effects of stress on immune cell distribution. Dynamics and hormonal mechanisms. J Immunol 154:5511鈥?527
    17. Wei LX, Zhou JN, Roberts AI, Shi YF (2003) Lymphocyte reduction induced by hindlimb unloading: distinct mechanisms in the spleen and thymus. Cell Res 13:465鈥?71 CrossRef
    18. Wang KX, Shi YF, Denhardt DT (2007) Osteopontin regulates hindlimb-unloading-induced lymphoid organ atrophy and weight loss by modulating corticosteroid production. Proc Natl Acad Sci USA 104:14777鈥?4782 CrossRef
    19. Wang KX, Shi YF, Ron Y, Kazanecki CC, Denhardt DT (2009) Plasma osteopontin modulates chronic restraint stress-induced thymus atrophy by regulating stress hormones: inhibition by an anti-osteopontin monoclonal antibody. J Immunol 182:2485鈥?491 CrossRef
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Metabolic Diseases
    Orthopedics
    Internal Medicine
  • 出版者:Springer Japan
  • ISSN:1435-5604
文摘
Rodent hindlimb unloading (HU) by tail-suspension is a model to investigate disuse-induced bone loss in vivo. Previously, we have shown that osteopontin (OPN, also known as Spp1) is required for unloading-induced bone loss. However, how unloading affects OPN expression in the body is not fully understood. Here, we examined OPN expression in peripheral blood of mice subjected to HU. Real-time RT-PCR analysis indicated that OPN expression is increased in circulating peripheral blood cells. This HU-induced increase in OPN mRNA expression was specific in circulating peripheral blood cells, as OPN was not increased in the blood cells in bone marrow. HU-induced enhancement in OPN expression in peripheral blood cells was associated with an increase in the fraction of monocyte/macrophage lineage cells in the peripheral blood. In contrast, HU decreased the fraction size of B-lymphocytes in the peripheral blood. We further examined if B-lymphogenesis is affected in the mice deficient for osteopontin subjected to HU. In bone marrow, HU decreased the population of the B-lymphocyte lineage cells significantly, whereas it did not alter the population of monocyte/macrophage lineage cells. HU also increased the cells in T-lymphocyte lineage in bone marrow. Interestingly, these changes were observed similarly both in OPN-deficient and wild-type mice. These results indicate for the first time that HU increases OPN expression in circulating cells and suppresses bone marrow B-lymphogenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700