Evaluation of seismic hazard for the assessment of historical elements at risk: description of input and selection of intensity measures
详细信息    查看全文
  • 作者:John Douglas (1)
    Darius M. Seyedi (1)
    Thomas Ulrich (1)
    Hormoz Modaressi (1)
    Evelyne Foerster (1)
    Kyriazis Pitilakis (2)
    Dimitris Pitilakis (2)
    Anna Karatzetzou (2)
    George Gazetas (3)
    Evangelia Garini (3)
    Marianna Loli (3)
  • 关键词:Seismic hazard assessment ; Site effects ; Intensity measures ; Fragility curves ; Historical buildings ; Cultural heritage assets ; Monuments
  • 刊名:Bulletin of Earthquake Engineering
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:13
  • 期:1
  • 页码:49-65
  • 全文大小:287 KB
  • 参考文献:1. Abrahamson N, Atkinson G, Boore D, Bozorgnia Y, Campbell K, Chiou B, Idriss IM, Silva W, Youngs R (2008) Comparisons of the NGA ground-motion relations. Earthq Spectra 24(1):45鈥?6 CrossRef
    2. Anastasopoulos I, Gazetas G (2007) Foundation-structure systems over a rupturing normal fault: part I. Observations after the Kocaeli 1999 earthquake. Bull Earthq Eng 5(3):253鈥?75 CrossRef
    3. Anastasopoulos I, Gazetas G, Bransby MF, Davies MCR, El Nahas A (2009) Normal fault rupture interaction with strip foundations. J Geotech Geoenviron Eng, ASCE 135(3):359鈥?70 CrossRef
    4. Arias A (1970) A measure of earthquake intensity. In: Hansen RJ (ed) Seismic design for nuclear power plants. The M.I.T. Press, Cambridge, pp 438鈥?83
    5. Baturay MB, Stewart JP (2003) Uncertainty and bias in ground-motion estimates from ground response analyses. Bull Seismol Soc Am 93(5):2025鈥?042 CrossRef
    6. Bazzurro P, Cornell CA (1999) Disaggregation of seismic hazard. Bull Seismol Soc Am 89(2):501鈥?20
    7. Bazzurro P, Cornell CA (2002) Vector-valued probabilistic seismic hazard analysis (VPSHA). In: Proceedings of 7th U.S. National Conference on Earthquake Engineering, Boston, MA, July 21鈥?5, Paper No. 61
    8. Bommer JJ, Martinez-Pereira A (1999) The effective duration of earthquake strong motion. J Earthq Eng 3(2):127鈥?72
    9. Chapman MC (1999) On the use of elastic input energy for seismic hazard analysis. Earthq Spectra 15(4):607鈥?35 CrossRef
    10. Delavaud E, Cotton F, Akkar S, Scherbaum F, Danciu L, Beauval C, Drouet S, Douglas J, Basili R, Sandikkaya MA, Segou M, Faccioli E, Theodoulidis N (2012) Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. J Seismol 16(3):451鈥?73. doi:10.1007/s10950-012-9281-z CrossRef
    11. Douglas J (2010) Consistency of ground-motion predictions from the past four decades. Bull Earthq Eng 8(6):1515鈥?526. doi:10.1007/s10518-010-9195-5 CrossRef
    12. Douglas J (2011) Ground-motion prediction equations 1964鈥?010, Final report, BRGM/RP-59356-FR (PEER 2011/102), 444 pages, 9 (illustrations)
    13. Douglas J (2012) Consistency of ground-motion predictions from the past four decades: peak ground velocity and displacement, Arias intensity and relative significant duration. Bull Earthq Eng 10(5):1339鈥?356. doi:10.1007/s10518-012-9359-6 CrossRef
    14. Douglas J, Aochi H (2008) A survey of techniques for predicting earthquake ground motions for engineering purposes. Surv Geophys 29(3):187鈥?20. doi:10.1007/s10712-008-9046-y CrossRef
    15. Faccioli E, Anastasopoulos I, Callerio A, Gazetas G (2008) Fault rupture-foundation interaction: selected case histories. Bull Earthq Eng 6(4):557鈥?83. doi:10.1007/s10518-008-9089-y CrossRef
    16. Fotopoulou S, Pitilakis K (2012) Vulnerability assessment of reinforced concrete buildings subjected to seismically triggered slow-moving earth slides. Landslides. doi:10.1007/s10346-012-0345-5
    17. Fotopoulou S, Pitilakis K (2013) Fragility curves for reinforced concrete buildings to seismically triggered slow-moving slides. Soil Dyn Earthq Eng 48:143鈥?61 CrossRef
    18. Galli P, Galadini F (2001) Surface faulting of archeological relics. A review of case histories from the Dead Sea to the Alps. Tectonophysics 335(3):291鈥?12 CrossRef
    19. Gallipoli MR, Bianca M, Mucciarelli M, Parolai S, Picozzi M (2013) Topographic versus stratigraphic amplification: mismatch between code provisions and observations during the L鈥橝quila (Italy, 2009) sequence. Bull Earthq Eng 11(5):1325鈥?336. doi:10.1007/s10518-013-9446-3 CrossRef
    20. Garini E, Gazetas G (2013) Damage potential of near-fault records: sliding displacement against conventional intensity measures. Bull Earthq Eng 11(2):455鈥?80
    21. Garini E, Gazetas G, Anastasopoulos I (2011) Asymmetric 鈥楴ewmark鈥?sliding caused by motions containing severe 鈥榙irectivity鈥?and 鈥榝ling鈥?pulses. G茅otechnique 61(9):753鈥?56 CrossRef
    22. Gazetas G, Loli M, Anastasopoulos I (2014) Effects of permanent ground displacements due to near fault conditions on the seismic performance of masonry structures. Bull Earthq Eng (this issue)
    23. Gazetas G (2012) Some presumptions on the nature of base excitation may erroneously affect the response of strongly inelastic systems. In: Proceedings of the 15th World Conference on Earthquake Engineering (WCEE), Lisbon, Portugal
    24. Gazetas G, Garini E, Anastasopoulos I (2009) Effects of near-fault ground shaking on sliding systems. J Geotech Eng, ASCE 135(12):1906鈥?921 CrossRef
    25. Gehl P, Seyedi DM, Douglas J (2013) Vector-valued fragility functions for seismic risk evaluation. Bull Earthq Eng 11(2):365鈥?84. doi:10.1007/s10518-012-9402-7 CrossRef
    26. Gelagoti F, Kourkoulis R, Anastasopoulos I, Gazetas G (2012) Nonlinear dimensional analysis of trapezoidal valleys subjected to vertically propagating SV waves. Bull Seismol Soc Am 102(3):199鈥?017 CrossRef
    27. Gelagoti F, Kourkoulis R, Anastasopoulos I, Tazoh T, Gazetas G (2010) Seismic wave propagation in a very soft alluvial valley: sensitivity to ground motion鈥渄etails鈥?and soil nonlinearity, generation of parasitic vertical component. Bull Seismol Soc Am 100(6):3035鈥?054 CrossRef
    28. Goda K, Atkinson GM (2009) Probabilistic characterization of spatially correlated response spectra for earthquakes in Japan. Bull Seismol Soc Am 99(5):3003鈥?020 CrossRef
    29. Hancock J, Bommer JJ (2005) The effective number of cycles of earthquake ground motion. Earthq Eng Struct Dyn 34:637鈥?64. doi:10.1002/eqe.437 CrossRef
    30. Housner GW (1959) Behavior of structures during earthquakes. J Eng Mech Div, ASCE 85(EM14):109鈥?29
    31. Jayaram N, Baker JW (2009) Correlation model for spatially distributed ground motion intensities. Earthq Eng Struct Dyn 38(15):1687鈥?708 CrossRef
    32. Karakhanian AS, Trifonov VG, Ivanova TP, Avagyan A, Rukieh M, Minini H, Dodonov AE, Bachmanov DM (2008) Seismic deformation in the St. Simeon Monasteries (Qal鈥檃t Sim鈥檃n), Northwestern Syria. Tectonophysics 453(1鈥?):122鈥?47 CrossRef
    33. Lagomarsino S, Cattari S (2014) PERPETUATE guidelines for seismic performance-based assessment of cultural heritage masonry structures. Bull Earthq Eng (this issue)
    34. Lagomarsino S, Modaressi H, Pitilakis K, Bosjlikov V, Calderini C, D鈥橝yala D, Benouar D, Cattari S (2010) PERPETUATE Project: the proposal of a performance-based approach to earthquake protection of cultural heritage. Adv Mater Res 133鈥?34:1119鈥?124 CrossRef
    35. Lagomarsino S, Abbas N, Calderini C, Cattari S., Rossi M, Ginanni Corradini R, Marghella G, Mattolin F, Piovanello V (2011) Classification of cultural heritage assets and seismic damage variables for the identification of performance levels. In: Proceedings of structural repairs and maintenance of heritage architecture conference (STREMAH), WIT Press, pp. 697鈥?08 ISSN 1743鈥?509
    36. Loli M, Bransby MF, Anastasopoulos I, Gazetas G (2010) Interaction of caisson foundations with a seismically rupturing normal fault: centrifuge testing versus numerical simulation. Geotechnique 62(1):29鈥?3
    37. Miranda E, Bertero VV (1994) Evaluation of strength reduction factors for earthquake-resistant design. Earthq Spectra 10(2):357鈥?79 CrossRef
    38. Negulescu C, Foerster E (2010) Parametric studies and quantitative assessment of the vulnerability of a RC frame building exposed to differential settlements. Nat Hazards Earth Syst Sci 10(9):1781鈥?792. doi:10.5194/nhess-10-1781-2010 CrossRef
    39. Oliveira CS (2003) Seismic vulnerability of historical constructions: a contribution. Bull Earthq Eng 1(1):37鈥?2 CrossRef
    40. Pace B, Albarello D, Boncio P, Dolce M, Galli P, Messina P, Peruzza L, Sabetta F, San貌 T, Visini F (2011) Predicted ground motion after the L鈥橝quila 2009 earthquake (Italy, \(\text{ M }_{{\rm w}}\) 6.3): input spectra for seismic microzoning. Bull Earthq Eng 9(1):199鈥?30. doi: 10.1007/s10518-010-9238-y CrossRef
    41. Paolucci R, Smerzini C (2008) Earthquake-induced transient ground strains from dense seismic networks. Earthq Spectra 24(2):453鈥?70. doi:10.1193/1.2923923 CrossRef
    42. Pitilakis K (2004) In: Ansal A (eds) Site effects, recent advances in earthquake geotechnical engineering and microzonation. Springer, Netherlands
    43. Pitilakis D, Clouteau D (2010) Equivalent linear substructure approximation of soil-foundation-structure interaction: model presentation and validation. Bull Earthq Eng 8(2):257鈥?82. doi:10.1007/s10518-009-9128-3 CrossRef
    44. Pitilakis D, Karatzetzou A (2014) Impedance functions of flexible foundations to assess soil-foundation-structure interaction in masonry monumental buildings. Bull Earthq Eng (this issue)
    45. Pitilakis K, Riga E, Anastasiadis A (2012) Design spectra and amplification factors for Eurocode 8. Bull Earthq Eng 10(5):1377鈥?400. doi:10.1007/s10518-012-9367-6 CrossRef
    46. Pitilakis K, Riga E, Anastasiadis A (2013a) New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bull Earthq Eng 11(4):925鈥?66. doi:10.1007/s10518-013-9429-4 CrossRef
    47. Pitilakis K, Riga E, Anastasiadis A (2013b) Erratum to: new code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bull Earth Eng 11(4):967. doi:10.1007/s10518-013-9440-9 CrossRef
    48. Pitilakis D, Moderessi-Farahmand-Razavi A, Clouteau D (2013c) Equivalent-linear dynamic impedance functions of surface foundations. J Geotech Geoenviron Eng 139(7):1130鈥?139. doi:10.1061/(ASCE)GT.1943-5606.0000829 CrossRef
    49. Priestley MJN, Calvi GM, Kowalsky MJ (2007) Displacement-based seismic design of structures. IUSS Press, Pavia 721
    50. Rathje EM, Faraj F, Russell S, Bray JD (2004) Empirical relationships for frequency content parameters of earthquake ground motions. Earthq Spectra 20(1):119鈥?44 CrossRef
    51. Seyedi DM, Gehl P, Douglas J, Davenne L, Mezher N, Ghavamian S (2010) Development of seismic fragility surfaces for reinforced concrete buildings by means of nonlinear time-history analysis. Earthq Eng Struct Dyn 39:91鈥?08. doi:10.1002/eqe.939
    52. Toh JCW, Pender MJ (2008) Earthquake performance and permanent displacements of shallow foundations. In: Proceedings of New Zealand Society for Earthquake Engineering Conference, paper number 40
  • 作者单位:John Douglas (1)
    Darius M. Seyedi (1)
    Thomas Ulrich (1)
    Hormoz Modaressi (1)
    Evelyne Foerster (1)
    Kyriazis Pitilakis (2)
    Dimitris Pitilakis (2)
    Anna Karatzetzou (2)
    George Gazetas (3)
    Evangelia Garini (3)
    Marianna Loli (3)

    1. BRGM, Orl茅ans, France
    2. Aristotle University of Thessaloniki, Thessalon铆ki, Greece
    3. National Technical University of Athens, Athens, Greece
  • ISSN:1573-1456
文摘
The assessment of historical elements at risk from earthquake loading presents a number of differences from the seismic evaluation of modern structures, for design or retrofitting purposes, which is covered by existing building codes, and for the development of fragility curves, procedures for which have been extensively developed in the past decade. This article briefly discusses: the hazard framework for historical assets, including a consideration of the appropriate return period to be used for such elements at risk; the intensity measures that could be used to describe earthquake shaking for the analysis of historical assets; and available approaches for their assessment. We then discuss various unique aspects of historical assets that mean the characterisation of earthquake loading must be different from that for modern structures. For example, historical buildings are often composed of heterogeneous materials (e.g., old masonry) and they are sometimes located where strong local site effects occur due to: steep topography (e.g., hilltops), basin effects or foundations built on the remains of previous structures. Standard seismic hazard assessment undertaken for modern structures and the majority of sites is generally not appropriate. Within the PERPETUATE project performance-based assessments, using nonlinear static and dynamic analyses for the evaluation of structural response of historical assets, were undertaken. The steps outlined in this article are important for input to these assessments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700