A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)
详细信息    查看全文
  • 作者:Aurora Diaz (1)
    Mohamed Fergany (17) (2)
    Gelsomina Formisano (3)
    Peio Ziarsolo (4)
    José Blanca (4)
    Zhanjun Fei (5)
    Jack E Staub (6) (7)
    Juan E Zalapa (6)
    Hugo E Cuevas (6) (8)
    Gayle Dace (9)
    Marc Oliver (10)
    Nathalie Boissot (11)
    Catherine Dogimont (11)
    Michel Pitrat (11)
    René Hofstede (12)
    Paul van Koert (12)
    Rotem Harel-Beja (13)
    Galil Tzuri (13)
    Vitaly Portnoy (13)
    Shahar Cohen (14)
    Arthur Schaffer (14)
    Nurit Katzir (13)
    Yong Xu (15)
    Haiying Zhang (15)
    Nobuko Fukino (16)
    Satoru Matsumoto (16)
    Jordi Garcia-Mas (2)
    Antonio J Monforte (1) (2)
  • 刊名:BMC Plant Biology
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:11
  • 期:1
  • 全文大小:457KB
  • 参考文献:1. Vezzulli S, Troggio M, Coppola G, Jermakow A, Cartwright D, Zharkikh A, Stefanini M, Grando MS, Viola R, Adam-Blondon AF, Thomas M, This P, Velasco R: ng class="a-plus-plus">A reference integrated map for cultivated grapevine (ng> ng class="a-plus-plus">Vitis viniferang> ng class="a-plus-plus">L.) from three crosses, based on 283 SSR and 501 SNP-based markers.ng> / Theor Appl Genet 2008, ng class="a-plus-plus">117:ng>499-11. nal" href="http://dx.doi.org/10.1007/s00122-008-0794-3">CrossRef
    2. Truco MJ, Antonise R, Lavelle D, Ochoa O, Kozik A, Witsenboer H, Fort SB, Jeuken MJW, Kesseli RV, Lindhout P, Michelmore RW, Peleman J: ng class="a-plus-plus">A high-density, integrated genetic linkage map of lettuce (ng> ng class="a-plus-plus">Lactucang> ng class="a-plus-plus">spp.).ng> / Theor Appl Genet 2007, ng class="a-plus-plus">115:ng>735-46. nal" href="http://dx.doi.org/10.1007/s00122-007-0599-9">CrossRef
    3. Falque M, Decousset L, Dervins D, Jacob AM, Joets J, Martinant JP, Raffoux X, Ribiere N, Ridel C, Samson D, Charcosset A, Murigneux A: ng class="a-plus-plus">Linkage mapping of 1454 new maize candidate gene loci.ng> / Genetics 2005, ng class="a-plus-plus">170:ng>1957-966. nal" href="http://dx.doi.org/10.1534/genetics.104.040204">CrossRef
    4. Isobe S, K?lliker R, Hisano H, Sasamoto S, Wada T, Klimenko I, Okumura K, Tabata S: ng class="a-plus-plus">Construction of a consensus linkage map for red clover (ng> ng class="a-plus-plus">Trifolium pratenseng> ng class="a-plus-plus">L.).ng> / BMC Plant Biol 2009, ng class="a-plus-plus">9:ng>57. nal" href="http://dx.doi.org/10.1186/1471-2229-9-57">CrossRef
    5. Studer B, K?lliker R, Muylle H, Asp T, Frei U, Roldán-Ruiz I, Barre P, Tomaszewski C, Meally H, Barth S, Sk?t L, Armstead IP, Dolstra O, Lübberstedt T: ng class="a-plus-plus">EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (ng> ng class="a-plus-plus">Loliumng> ng class="a-plus-plus">spp.).ng> / BMC Plant Biol 2010, ng class="a-plus-plus">10:ng>177. nal" href="http://dx.doi.org/10.1186/1471-2229-10-177">CrossRef
    6. Somers DJ, Isaac P, Edwards K: ng class="a-plus-plus">A high-density microsatellite consensus map for bread wheat (ng> ng class="a-plus-plus">Triticum aestivumng> ng class="a-plus-plus">L.).ng> / Theor Appl Genet 2004, ng class="a-plus-plus">109:ng>1105-114. nal" href="http://dx.doi.org/10.1007/s00122-004-1740-7">CrossRef
    7. Arumanagathan K, Earle ED: ng class="a-plus-plus">Nuclear DNA content of some important plant species.ng> / Plant Mol Biol Rep 1991, ng class="a-plus-plus">9:ng>208-18. nal" href="http://dx.doi.org/10.1007/BF02672069">CrossRef
    8. Baudracco-Arnas S, Pitrat M: ng class="a-plus-plus">A genetic map of melon (ng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers.ng> / Theor Appl Genet 1996, ng class="a-plus-plus">93:ng>57-4. nal" href="http://dx.doi.org/10.1007/BF00225727">CrossRef
    9. FAOSTAT: [http://faostat.fao.org/] / Food and Agricultural Organization of the United Nations. 2011.
    10. Oliver M, Garcia-Mas J, Cardus M, Pueyo N, Lopez-Sese A, Arroyo M, Gomez-Paniagua H, Arus P, de Vicente MC: ng class="a-plus-plus">Construction of a reference linkage map for melon.ng> / Genome 2001, ng class="a-plus-plus">44:ng>836-45. nal" href="http://dx.doi.org/10.1139/g01-073">CrossRef
    11. Perin C, Hagen LS, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M: ng class="a-plus-plus">A reference map ofng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">based on two recombinant inbred line populations.ng> / Theor Appl Genet 2002, ng class="a-plus-plus">104:ng>1017-034. nal" href="http://dx.doi.org/10.1007/s00122-002-0864-x">CrossRef
    12. Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arus P, Monforte AJ: ng class="a-plus-plus">Simple-sequence repeat markers used in merging linkage maps of melon (ng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">L.).ng> / Theor Appl Genet 2005, ng class="a-plus-plus">110:ng>802-11. nal" href="http://dx.doi.org/10.1007/s00122-004-1814-6">CrossRef
    13. Cuevas HE, Staub JE, Simon PW, Zalapa JE, McCreight JD: ng class="a-plus-plus">Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (ng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">L.).ng> / Theor Appl Genet 2008, ng class="a-plus-plus">117:ng>1345-359. nal" href="http://dx.doi.org/10.1007/s00122-008-0868-2">CrossRef
    14. Cuevas HE, Staub JE, Simon PW, Zalapa JE: ng class="a-plus-plus">A consensus linkage map identifies genomics regions controlling fruit maturity and beta-carotene-associated flesh color in melon (ng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">L.).ng> / Theor Appl Genet 2009, ng class="a-plus-plus">119:ng>741-56. nal" href="http://dx.doi.org/10.1007/s00122-009-1085-3">CrossRef
    15. Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, Arus P, Garcia-Mas J, Monforte AJ: ng class="a-plus-plus">Bin mapping of genomic and EST-derived SSRs in melon (ng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">L.).ng> / Theor Appl Genet 2008, ng class="a-plus-plus">118:ng>139-50. nal" href="http://dx.doi.org/10.1007/s00122-008-0883-3">CrossRef
    16. Fukino N, Yoshioka Y, Kubo N, Hirai M, Sugiyama M, Sakata Y, Matsumoto S: ng class="a-plus-plus">Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (ng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">L.).ng> / Theor Appl Genet 2008, ng class="a-plus-plus">118:ng>165-75. nal" href="http://dx.doi.org/10.1007/s00122-008-0885-1">CrossRef
    17. Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arus P, Nuez F, Monforte AJ, Picó MB, Garcia-Mas J: ng class="a-plus-plus">A set of EST-SNPs for map saturation and cultivar identification in melon.ng> / BMC Plant Biol 2009, ng class="a-plus-plus">9:ng>90. nal" href="http://dx.doi.org/10.1186/1471-2229-9-90">CrossRef
    18. Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger J, Tadmor Y, SchaVer AA, Katzir N: ng class="a-plus-plus">A genetic map of melon highly enriched with fruit quality QTL and EST markers, including sugar and carotenoid metabolism genes.ng> / Theor Appl Genet 2010, ng class="a-plus-plus">121:ng>511-33. nal" href="http://dx.doi.org/10.1007/s00122-010-1327-4">CrossRef
    19. Stepansky A, Kovalski I, Perl-Treves R: ng class="a-plus-plus">Intraspecific classification of melons (ng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">L.) in view of their phenotypic and molecular variation.ng> / Plant Syst Evol 1999, ng class="a-plus-plus">217:ng>313-32. nal" href="http://dx.doi.org/10.1007/BF00984373">CrossRef
    20. Monforte AJ, Eduardo I, Abad S, Arus P: ng class="a-plus-plus">Inheritance mode of fruit traits in melon: Heterosis for fruit shape and its correlation with genetic distance.ng> / Euphytica 2005, ng class="a-plus-plus">144:ng>31-8. nal" href="http://dx.doi.org/10.1007/s10681-005-0201-y">CrossRef
    21. Burger Y, Sa'ar U, Paris HS, Lewinsohn E, Katzir N, Tadmor Y, Schaffer AA: ng class="a-plus-plus">Genetic variability for valuable fruit quality traits inng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">.ng> / Isr J Plant Sci 2006, ng class="a-plus-plus">54:ng>233-42. nal" href="http://dx.doi.org/10.1560/IJPS_54_3_233">CrossRef
    22. Burger Y, Jonas-Levi A, Gurski E, Horev C, Saar U, Cohen R: ng class="a-plus-plus">Variation in antifungal activity in extracts fromng> ng class="a-plus-plus">Momordicang> ng class="a-plus-plus">plants.ng> / Isr J Plant Sci 2010, ng class="a-plus-plus">58:ng>1-. nal" href="http://dx.doi.org/10.1560/IJPS.58.1.1">CrossRef
    23. Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M: ng class="a-plus-plus">Genetic control of fruit shape acts prior to anthesis in melon (ng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">L.).ng> / Mol Genet Genomics 2002, ng class="a-plus-plus">266:ng>933-41. nal" href="http://dx.doi.org/10.1007/s00438-001-0612-y">CrossRef
    24. Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P: ng class="a-plus-plus">Identification of quantitative trait loci involved in fruit quality traits in melon (ng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">L.).ng> / Theor Appl Genet 2004, ng class="a-plus-plus">108:ng>750-58. nal" href="http://dx.doi.org/10.1007/s00122-003-1483-x">CrossRef
    25. Eduardo I, Arus P, Monforte AJ, Obando J, Fernandez-Trujillo JP, Martinez JA, Alarcon AL, Alvarez JM, van der Knaap E: ng class="a-plus-plus">Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines.ng> / J Am Soc Hortic Sci 2007, ng class="a-plus-plus">132:ng>80-9.
    26. Obando-Ulloa JM, Eduardo I, Monforte AJ, Fernandez-Trujillo JP: ng class="a-plus-plus">Identification of QTL related to sugar and organic acid composition in melon using near-isogenic lines.ng> / Sci Hortic 2009, ng class="a-plus-plus">121:ng>425-33. nal" href="http://dx.doi.org/10.1016/j.scienta.2009.02.023">CrossRef
    27. Boissot N, Thomas S, Sauvion N, Marchal C, Pavis C, Dogimont C: ng class="a-plus-plus">Mapping and validation of QTLs for resistance to aphids and whiteflies in melon.ng> / Theor Appl Genet 2010, ng class="a-plus-plus">121:ng>9-0. nal" href="http://dx.doi.org/10.1007/s00122-010-1287-8">CrossRef
    28. ng class="a-plus-plus">Genome Data Base for Rosaceaeng> [http://www.rosaceae.org/]
    29. ng class="a-plus-plus">SOL Genomics Networkng> [nomics.net/" class="a-plus-plus">http://solgenomics.net/]
    30. ng class="a-plus-plus">Grameneng> [ne.org/" class="a-plus-plus">http://www.gramene.org/]
    31. ng class="a-plus-plus">Cucurbit Genomics Databaseng> [http://www.icugi.org/]
    32. Fang L, Yong X, Yue Z, Di C, Jian-ming F, Shao-gui G, Guo-yi G, Hong-ping Y, Ming-zhu W, Hai-ying Z: ng class="a-plus-plus">Construction of permanent genetic map and comparative analysis of Xinjiang Hami melon (ng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">L. ssp.ng> ng class="a-plus-plus">melong> ng class="a-plus-plus">. convar.ng> ng class="a-plus-plus">amering> ng class="a-plus-plus">(Pang.) Greb).ng> / Acta Hortic Sinica 2009, ng class="a-plus-plus">36:ng>1767-774.
    33. Gonzalo MJ, Claveria E, Monforte AJ, Dolcet-Sanjuan R: ng class="a-plus-plus">Parthenogenic haploids in melon: generation and molecular characterization of a doubled haploid line population.ng> / J Amer Soc Hortic Sci 2011, ng class="a-plus-plus">136:ng>145-54.
    34. Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR: ng class="a-plus-plus">A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers.ng> / BMC Plant Biol 2009, ng class="a-plus-plus">9:ng>13. nal" href="http://dx.doi.org/10.1186/1471-2229-9-13">CrossRef
    35. Villalta I, Reina-Sanchez A, Cuartero J, Carbonell EA, Asins MJ: ng class="a-plus-plus">Comparative microsatellite linkage analysis and genetic structure of two populations of F-6 lines derived fromng> ng class="a-plus-plus">Lycopersicon pimpinellifoliumng> ng class="a-plus-plus">andng> ng class="a-plus-plus">L. cheesmaniing> ng class="a-plus-plus">.ng> / Theor Appl Genet 2005, ng class="a-plus-plus">110:ng>881-94. nal" href="http://dx.doi.org/10.1007/s00122-004-1906-3">CrossRef
    36. Taylor DR, Ingvarsson PK: ng class="a-plus-plus">Common features of segregation distortion in plants and animals.ng> / Genetica 2003, ng class="a-plus-plus">117:ng>27-5. nal" href="http://dx.doi.org/10.1023/A:1022308414864">CrossRef
    37. Zamir D, Tadmor Y: ng class="a-plus-plus">Unequal segregation of nuclear genes in plants.ng> / Bot Gaz 1986, ng class="a-plus-plus">147:ng>355-58. nal" href="http://dx.doi.org/10.1086/337602">CrossRef
    38. N'Diaye A, de Weg WEV, Kodde LP, Koller B, Dunemann F, Thiermann M, Tartarini S, Gennari F, Durel CE: ng class="a-plus-plus">Construction of an integrated consensus map of the apple genome based on four mapping populations.ng> / Tree Genet Genomes 2008, ng class="a-plus-plus">4:ng>727-43. nal" href="http://dx.doi.org/10.1007/s11295-008-0146-0">CrossRef
    39. Nicolas SD, Le Mignon G, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, Ryder CD, Chevre AM, Jenczewski E: ng class="a-plus-plus">Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis ofng> ng class="a-plus-plus">Brassica napusng> ng class="a-plus-plus">haploids.ng> / Genetics 2007, ng class="a-plus-plus">175:ng>487-03. nal" href="http://dx.doi.org/10.1534/genetics.106.062968">CrossRef
    40. Van Ooijen JW, Vorrips RE: ng class="a-plus-plus">JoinMapng> ng class="a-plus-plus">?ng> ng class="a-plus-plus">Version 3.0, Software for the calculation of genetic linkage map.ng> In / Plant Research International. Wageningen, The Netherlands; 2001.
    41. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arus P: ng class="a-plus-plus">Mapping with a few plants: Using selective mapping for microsatellite saturation of the Prunus reference map.ng> / Genetics 2005, ng class="a-plus-plus">171:ng>1305-309. nal" href="http://dx.doi.org/10.1534/genetics.105.043661">CrossRef
    42. van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, Ghareeb B, Isidore E, de Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, van der Voort JNAMR, Rousselle-Bourgeois F, van Vliet J, Waugh R, Visser RGF, Bakker J, van Eck HJ: ng class="a-plus-plus">Construction of a 10,000-Marker Ultradense Genetic Recombination Map of Potato: Providing a framework for accelerated gene isolation and a genomewide physical map.ng> / Genetics 2006, ng class="a-plus-plus">173:ng>1075-087. nal" href="http://dx.doi.org/10.1534/genetics.106.055871">CrossRef
    43. Haanstra JPW, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden AW, Tanksley S, Lindhout P, Peleman J: ng class="a-plus-plus">An integrated high density RFLP-AFLP map of tomato based on twong> ng class="a-plus-plus">Lycopersicon esculentumng> ng class="a-plus-plus">×ng> ng class="a-plus-plus">L. pennelliing> ng class="a-plus-plus">Fng> ng class="a-plus-plus">2ng> ng class="a-plus-plus">populations.ng> / Theor Appl Genet 1999, ng class="a-plus-plus">99:ng>254-71. nal" href="http://dx.doi.org/10.1007/s001220051231">CrossRef
    44. Ritschel PS, Lins TCL, Tristan RL, Buso GSC, Buso JA, Ferreira ME: ng class="a-plus-plus">Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (ng> ng class="a-plus-plus">Cucumis melong> ng class="a-plus-plus">L.).ng> / BMC Plant Biol 2004, ng class="a-plus-plus">4:ng>1-4. nal" href="http://dx.doi.org/10.1186/1471-2229-4-9">CrossRef
    45. Perin C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech JC, Latche A, Pitrat M, Lelievre JM: ng class="a-plus-plus">Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit.ng> / Plant Physiol 2002, ng class="a-plus-plus">129:ng>300-09. nal" href="http://dx.doi.org/10.1104/pp.010613">CrossRef
    46. Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ, Garcia-Mas J: ng class="a-plus-plus">Candidate genes and QTL for fruit ripening and softening in melon.ng> / Theor Appl Genet 2008, ng class="a-plus-plus">116:ng>589-02. nal" href="http://dx.doi.org/10.1007/s00122-007-0694-y">CrossRef
    47. Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W, Lucas WJ, Wang XW, Xie BY, Ni PX, / et al.: ng class="a-plus-plus">The genome of the cucumber,ng> ng class="a-plus-plus">Cucumis sativusng> ng class="a-plus-plus">L.ng> / Nature Genet 2009, ng class="a-plus-plus">41:ng>1275-U1229. nal" href="http://dx.doi.org/10.1038/ng.475">CrossRef
    48. Paran I, van der Knaap E: ng class="a-plus-plus">Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper.ng> / J Exp Bot 2007, ng class="a-plus-plus">58:ng>3841-852. nal" href="http://dx.doi.org/10.1093/jxb/erm257">CrossRef
    49. Pitrat M, Hanel P, Hammer K: ng class="a-plus-plus">Some comments on infraspecific classification on cultivars of melon.ng> / Acta Hort 2000, ng class="a-plus-plus">510:ng>29-6.
    50. Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, Tecle I, Tung CW, Ren L, Spooner W, Wei X, Avraham S, Ware D, Stein L, McCouch S: ng class="a-plus-plus">Gramene QTL database: development, content and applications.ng> / Database: J Biol Databases Curation 2009., ng class="a-plus-plus">bap005:ng>
    51. Voorrips RE: ng class="a-plus-plus">MapChart: Software for the graphical presentation of linkage maps and QTL.ng> / J Hered 2002, ng class="a-plus-plus">93:ng>77-8. nal" href="http://dx.doi.org/10.1093/jhered/93.1.77">CrossRef
  • 作者单位:Aurora Diaz (1)
    Mohamed Fergany (17) (2)
    Gelsomina Formisano (3)
    Peio Ziarsolo (4)
    José Blanca (4)
    Zhanjun Fei (5)
    Jack E Staub (6) (7)
    Juan E Zalapa (6)
    Hugo E Cuevas (6) (8)
    Gayle Dace (9)
    Marc Oliver (10)
    Nathalie Boissot (11)
    Catherine Dogimont (11)
    Michel Pitrat (11)
    René Hofstede (12)
    Paul van Koert (12)
    Rotem Harel-Beja (13)
    Galil Tzuri (13)
    Vitaly Portnoy (13)
    Shahar Cohen (14)
    Arthur Schaffer (14)
    Nurit Katzir (13)
    Yong Xu (15)
    Haiying Zhang (15)
    Nobuko Fukino (16)
    Satoru Matsumoto (16)
    Jordi Garcia-Mas (2)
    Antonio J Monforte (1) (2)

    1. Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC). Ciudad Politécnica de la Innovación (CPI), Ed. 8E. C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
    17. Agronomy Department Faculty of Agriculture, Ain Shams University, Cairo, Egypt
    2. IRTA, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB), Campus UAB, Edifici CRAG, 08193, Bellaterra (Barcelona), Spain
    3. Department of Soil, Plant, Environmental and Animal Production Sciences, Federico II University of Naples, Via Università 100, 80055, Portici, Italy
    4. COMAV-UPV, Institute for the Conservation and Breeding of Agricultural Biodiversity, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
    5. Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
    6. USDA-ARS, Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin, 1575 Linden Dr, Madison, WI, 53706, USA
    7. USDA-ARS, Forage and Range Research Laboratory, Utah State University, Logan, UT, 84322-6300, USA
    8. USDA-ARS, Tropical Agricultural Research Station, 2200 Pedro Albizu Campus Ave, Mayaguez, 00680-5470, Puerto Rico
    9. Syngenta Biotechnology, Inc., Research Triangle Park, NC, 27709, USA
    10. Syngenta Seeds, 12 chemin de l’Hobit, F-31790, Saint-Sauveur, France
    11. INRA, UR 1052, Unité de Génétique et d’Amélioration des Fruits et Légumes, Domaine St Maurice, BP 94, 84143, Montfavet Cedex, France
    12. Keygene N.V., P.O. Box 216, 6700 AE, Wageningen, The Netherlands
    13. Institute of Plant Science, Agricultural Research Organization (ARO), Newe Ya’ar Research Center, Ramat Yishay, 30095, Israel
    14. Institute of Plant Science, Agricultural Research Organization, Volcani Research Center, Bet Dagan, 50250, Israel
    15. National Engineering Research Center for Vegetables (NERCV), Beijing Academy Agricultural and Forestry Science, Beijing, 100097, China
    16. National Institute of Vegetable and Tea Science (NIVTS), 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
文摘
Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Conclusions Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700