A metabolomics approach exploring the function of the ESX-3 type VII secretion system of M. smegmatis
详细信息    查看全文
  • 作者:Du Toit Loots (1)
    Reinart J. Meissner-Roloff (1)
    Mae Newton-Foot (2)
    Nicolaas C. Gey van Pittius (2)
  • 关键词:Metabolomics ; ESX ; 3 knockout ; Iron and zinc homeostasis ; Amino acid metabolism
  • 刊名:Metabolomics
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:9
  • 期:3
  • 页码:631-641
  • 全文大小:326KB
  • 参考文献:1. Abdallah, A. M., Gey van Pittius, N. C., Champion, P. A., et al. (2007). Type VII secretion-em class="a-plus-plus">Mycobacteria show the way. / Nature Reviews Microbiology, / 5, 883-91. CrossRef
    2. Bino, R. J., Hall, R. D., Fiehn, O., et al. (2004). Potential for metabolomics as a functional tool for genomics. / Trends in Plant Science, / 9, 418-25. CrossRef
    3. Bitter, W., Houben, E. N. G., Bottai, D., et al. (2009). Systematic genetic nomenclature for type VII secretion systems. / PLoS Pathogens, / 5(10), e1000507. CrossRef
    4. Blenconwe, D. K., & Morby, A. P. (2003). Zn(II) metabolism in prokaryotes. / FEMS Microbiology Reviews, / 27(2-), 291-11. CrossRef
    5. Brereton, R. G. (2003). / Chemometrics—data analysis for the laboratory and chemical plant (p. 246). England: John Wiley & Sons Ltd west Sussex.
    6. Chong, I. G., & Jun, C. H. (2005). Performance of some variable selections methods when multicollinearity is present. / Chemometrics and Intelligent Laboratory Systems, / 78(1-), 103-12. CrossRef
    7. De Carvalho, L. P. S., Fischer, S. M., Marrero, J., Nathan, C., Ehrt, S., & Rhee, K. Y. (2010). Metabolomics of / Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. / Cell, / 17, 1122-131.
    8. De Voss, J. J., Rutter, K., Schroeder, G., & Barry, C. E. III. (1999). Iron acquisition and metabolism by / Mycobacteria. / Journal of Bacteriology, / 181(15), 4443-451.
    9. Ellis, S. M., & Steyn, H. S. (2003). Practical significance (effect sizes) versus or in combination with statistical significance ( / p-values). / Management Dynamics, / 12(4), 51-3.
    10. Fiehn, O., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. / Analytical Chemistry, / 72, 3573-580. CrossRef
    11. Gey van Pittius, N. C., Gamielden, J., Hide, W., Brown, G. D., Siezen, R. J., & Beyers, A. D. (2001). The ESAT-6 gene cluster of / Mycobacterium tuberculosis and other G?+?C gram-positive bacteria. / Genome Biology, / 2(10), 1-8. CrossRef
    12. Gold, B., Rodriguez, G. M., Marras, S. A., Pentecost, M., & Smith, I. (2001). The / Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. / Molecular Microbiology, / 42, 851-65. CrossRef
    13. Gonzalez, J. C., Peariso, K., Penner-Hahn, J. E., & Matthews, R. G. (1996). Cobalamin-independent methionine synthase from / Escherichia coli: A zinc metalloenzyme. / Biochemistry, / 35(38), 12228-2234. CrossRef
    14. Gordhan, B. G., & Parish, T. (2001). / Mycobacterium tuberculosis protocols. New Jersey: Humana Press.
    15. Jaki, B. U., Franzblau, S. G., Cho, S. H., & Pauli, G. F. (2006). Development of an extraction method for mycobacterial metabolome analysis. / Journal of Pharmaceutical and Biomedical Analysis, / 41(1), 196-00. CrossRef
    16. Jang, H., Nde, C., Toghrol, F., & Bentley, W. E. (2009). Microarray analysis of / Mycobacterium bovis BCG revealed induction of iron acquisition related genes in response to hydrogen peroxide. / Environmental Science and Technology, / 43, 9465-472. CrossRef
    17. Kanani, H., Chrysanthopoulos, P. K., & Klapa, M. I. (2008). Standardizing GC-MS metabolomics. / Journal of Chromotography, / 871, 191-01. CrossRef
    18. Kanehisa, M., Goto, S., Kawashima, S., & Nakaya, A. (2002). The KEGG databases at GenomeNet. / Nucleic Acids Research, / 30(1), 42-6. CrossRef
    19. Koekemoer, G., & Swanepoel, J. W. H. (2008). A semi-parametric method for transforming data to normality. / Statistics and Computing, / 18, 241-57. CrossRef
    20. Koon, N., Squire, C. J., & Baker, E. N., (2004). Crystal structure of LeuA from / Mycobacterium tuberculosis, a key enzyme in the leucine biosynthesis. / Proclamations of the National Academy of Sciences. U.S.A., / 101(22), 8295-300.
    21. Maciag, A., Dainese, E., Rodriguez, G. M., et al. (2007). Global analysis of the / Mycobacterium Tuberculosis Zur (FurB) regulon. / Journal of Bacteriology, / 189(3), 730-40. CrossRef
    22. Maciag, A., Piazza, A., Riccardi, G., & Milano, A. (2009). Transcriptional analysis of ESAT-6 cluster 3 in / Mycobacterium smegmatis. / BMC Microbiology, / 9, 48. CrossRef
    23. McCready, K. A., & Ratledge, C. (1978). Amounts of iron, heme and related compounds in / Mycobacterium smegmatis grown in various concentrations of iron. / Biochemistry Society Transactions, / 6, 421-23.
    24. Meissner-Roloff, R., Koekemoer, G., Warren, R. M., & Loots, D. T., (2012). A metabolomics investigation of a hyper- and hypo-virulent phenotype of Beijing lineage / M. tuberculosis. Metabolomics, in press.
    25. Miethke, M., Westers, H., Blom, E., Kuipers, O. P., & Marahiel, M. A. (2006). Iron starvation triggers the stringent response and induces amino acid biosynthesis for bacillibactin production in / Bacillus subtilis. / Journal of Bacteriology, / 188(24), 8655-657. CrossRef
    26. Olivier, I., & Loots, D. T. (2012). A metabolomics approach to characterize and identify various / Mycobacterium species. / Journal of Microbial Methods, / 88, 419-26. CrossRef
    27. Paley, S. M., & Karp, P. D. (2006). The pathway tools cellular overview diagram and omics viewer. / Nucleic Acids Research, / 34(13), 3771-778. CrossRef
    28. Parish, T., & Stoker, N. G. (2000). Use of a flexible cassette method to generate a double unmarked / Mycobacterium tuberculosis tlyAplcABC mutant by gene replacement. / Microbiology, / 146, 1969-975.
    29. Pejchal, R., & Ludwig, M. L. (2005). Cobalamin-independent methionine synthase (MetE): A face-to-face double barrel that evolved by gene duplication. / PLoS Biology, / 3(2), e31. CrossRef
    30. Polansky, A. M., & Baker, E. R. (2000). Multistage plug-in bandwidth selection for kernel distribution function estimates. / Journal of Statistical Computation and Simulation, / 65, 63-0. CrossRef
    31. Ratledge, C., & Dover, L. G. (2000). Iron metabolism in pathogenic bacteria. / Annual Reviews in Microbiology, / 54, 881-41. CrossRef
    32. Rodrigeuz, G. M., Gold, M., Gomez, M., Dussurget, O., & Smith, I. (1999). Identification and characterization of two divergently transcribed iron regulated genes in / Mycobacterium tuberculosis. / Tuberculosis and Lung Disease., / 79(5), 287-98. CrossRef
    33. Rodriguez, G. M., & Smith, I. (2003). Mechanisms of iron regulation in / mycobacteria: Role in physiology and virulence. / Molecular Microbiology, / 47, 1485-494. CrossRef
    34. Rodriguez, G. M., Voskuil, M. I., Gold, B., Schoolnik, G. K., & Smith, I. (2002). / ideR, an essential gene in / Mycobacterium tuberculosis: Role of IdeR in Iron-dependant gene expression, iron metabolism and oxidative stress response. / Infection and Immunity, / 70, 3371-381. CrossRef
    35. Sassetti, C. M., Boyd, D. H., & Rubin, E. J. (2003). Genes required for mycobacterial growth defined by high density mutagenesis. / Molecular Microbiology, / 48(1), 77-4. CrossRef
    36. Serafini, A., Boldrin, F., Palù, G., & Manganelli, R. (2009). Characterization of a / Mycobacterium tuberculosis ESX-3 conditional mutant: Essentiality and rescue by iron and zinc. / Journal of Bacteriology, / 191(20), 6340-344. CrossRef
    37. Siegrist, M. S., Unnikrishnan, M., McConnell, M. J., et al. (2009). Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. / Proclamations of the National Academy of Sciences. U.S.A., / 106(44), 18792-8797.
    38. Smith, A. W., Poyner, D. R., Hughes, K., & Lambert, P. A. (1994). Siderophore activity of myo-inositol hexakisphosphate in Pseudomonas aeruginosa. / Journal of Bacteriology, / 176(12), 3455-459.
    39. Tang, Y. J., Shui, W., Myers, S., Feng, X., Bertozzi, C., & Keasling, J. D. (2009). Central metabolism in / Mycobacterium smegmatis during the transition from O2-rich to O2-poor conditions as studied by isotopomer-assisted metabolite analysis. / Biotechnology Letters, / 31, 1233-240. CrossRef
    40. Touati, D. (2000). Iron and oxidative stress in bacteria. / Archives of Biochemistry and Biophysics, / 373(1), 1-. CrossRef
    41. WHO. (2008). / World Health Organization: Global tuberculosis control: Surveillance, planning and financing. Switzerland: WHO press.
    42. Yellaboina, S., Ranjan, S., Vindal, V., & Ranjan, A. (2006). Comparative analysis of iron regulated genes in mycobacteria. / FEBS Letters, / 580(11), 2567-576. CrossRef
  • 作者单位:Du Toit Loots (1)
    Reinart J. Meissner-Roloff (1)
    Mae Newton-Foot (2)
    Nicolaas C. Gey van Pittius (2)

    1. School for Physical and Chemical Sciences, Centre for Human Metabonomics, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
    2. DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, P.O. Box 19063, Francie van Zijl Drive, Tygerberg, 7505, South Africa
  • ISSN:1573-3890
文摘
The genome of Mycobacterium, including Mycobacterium tuberculosis, contains five copies of a cluster of genes encoding a novel type VII secretion system, named the ESX gene cluster region. This ESX-3 gene cluster is essential for in vitro growth and is thought to play a role in iron and zinc homeostasis, however, its exact functionality remains an enigma. A metabolomics research approach was subsequently used to compare the metabolite profiles of a M. smegmatis ESX-3 knockout strain to that a wild type parental strain, in order to elucidate its functionality from a metabolic perspective. Statistical analysis of the GC–MS generated data showed a clear separation between the wild type and knockout sample groups, based on the analysed metabolite profiles of these organisms. Of all the metabolite markers identified, various amino acids and metabolite pathways related to these, appeared to be most affected by the ESX-3 knockout, especially those with enzymes regulated by iron and zinc, supporting previous genomics and proteomics generated hypotheses and findings. This study is the first to demonstrate the capacity of using metabolomics, in conjunction with previous genomics and proteomic findings, to identify underlying metabolic changes and confirm previous hypotheses related to the functionality of ESX-3 in Mycobacterium growth and survival.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700