\( {\text{NO}}_{3}^{ - } \) and \( {\text{C}}_{2} {\text{O}}_{4}^{2 - } \)–OH?/sup> θ parameters were found to be 0.02369 and ?.005304, respectively. The Na-span class="InlineEquation" id="IEq5">\( {\text{C}}_{2} {\text{O}}_{4}^{2 - } \)-span class="InlineEquation" id="IEq6">\( {\text{NO}}_{3}^{ - } \) and Na-span class="InlineEquation" id="IEq7">\( {\text{C}}_{2} {\text{O}}_{4}^{2 - } \)–OH?/sup> ψ parameters were found to be 0.04069 and 0.017044, respectively. The solubility data could be modeled with temperature independent θ and ψ values over the experimental range investigated, which was 20-5?°C for the Na2C2O4–NaNO3–H2O system and 0-0?°C for the Na2C2O4–NaOH–H2O system." />
Pitzer Model Anion–Anion and Ternary Interaction Parameters for the Na2C2O4–NaOH–H2O and Na2C2O4–NaNO3–H2O Systems
详细信息    查看全文
  • 作者:Jacob G. Reynolds ; Robert Carter
  • 关键词:Pitzer model ; Oxalate ; Na2C2O4 ; Hanford ; Radioactive waste ; High ; level waste
  • 刊名:Journal of Solution Chemistry
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:44
  • 期:7
  • 页码:1358-1366
  • 全文大小:458 KB
  • 参考文献:1.Sharma, A.K., Clauss, S.A., Mong, G.M., Wahl, K.L., Campbell, J.A.: Analysis and quantification of organic acids in simulated Hanford tank waste and Hanford tank waste. J. Chromatogr. A 805, 101-07 (1998)View Article
    2.Toste, A.P., Lechner-Fish, T.J., Scheele, R.D.: Organics in a Hanford mixed waste revisited: myriad organics and chelator fragments unmasked. J. Radioanal. Nucl. Chem. 296, 523-30 (2013)View Article
    3.Reynolds, J.G., Cooke, G.A., Herting, D.L., Warrant, R.W.: Salt mineralogy of Hanford high-level waste staged for treatment. Ind. Eng. Chem. Res. 52, 9741-751 (2013)View Article
    4.Toste, A.P.: Degradation of chelating and complexing agents in an irradiated, simulated mixed waste. J. Radioanal. Nucl. Chem. 161, 549-59 (1992)View Article
    5.Toste, A.P.: Gamma radiolysis of EDTA in a simulated, mixed nuclear waste. J. Radioanal. Nucl. Chem. 235, 213-19 (1998)View Article
    6.Toste, A.P.: Detailed study of the γ-radiolysis of nitrilotriacetatic acid in a simulated, mixed nuclear waste. J. Radioanal. Nucl. Chem. 239, 433-39 (1999)View Article
    7.Toste, A.P.: The gamma-radiolysis of HEDTA in a simulated, mixed waste. J. Radioanal. Nucl. Chem. 249, 283-88 (2001)View Article
    8.Toste, A.P., Pilot, T.: Detailed study of HEDTA’s chemodynamics upon gamma-radiolysis in a simulated, mixed waste. J. Radioanal. Nucl. Chem. 277, 5-0 (2008)View Article
    9.Warrant, R.W., Cooke, G.A.: Characterization of the solids waste in the Hanford waste tanks using a combination of XRD, SEM and PLM. Adv. X-Ray Anal. 46, 251-56 (2003)
    10.Reynolds, J.G., Cooke, G.A., Herting, D.L., Warrant, R.W.: Evidence for dawsonite in Hanford high-level nuclear waste tanks. J. Hazard. Mater. 209-10, 186-92 (2012)View Article
    11.McGinnis, C.P., Welch, T.D., Hunt, R.D.: Caustic leaching of high-level radioactive tank sludge: a critical literature review. Sep. Sci. Technol. 34, 1479-494 (1999)View Article
    12.Russell, R.L., Snow, L.A., Peterson, R.A.: Methods to avoid post-filtration precipitation in treatment of high-level waste. Sep. Sci. Technol. 45, 1814-821 (2010)View Article
    13.Okemgbo, A.A., Hill, H.H., Metcalf, S.G., Bachelor, M.A.: Determination of nitrate and nitrite in Hanford defense waste by reverse-polarity capillary zone electrophoresis. J. Chromatogr. A 844, 387-94 (1999)View Article
    14.Poirier, M.R., Hay, M.S., Herman, D.T., Crapse, K.P., Thaxton, G.D., Fink, S.D.: Removal of sludge heels in Savannah River site waste tanks with oxalic acid. Sep. Sci. Technol. 45, 1858-875 (2010)View Article
    15.Rao, V.K., Pius, I.C., Subbarao, M., Chinnusamy, A., Natarajan, P.R.: Precipitation of plutonium oxalate from homogeneous solutions. J. Radional. Nucl. Chem. 100, 129-34 (1986)View Article
    16.Tachimori, S., Nakamura, H.: Extraction of some elements by mixture of DIDPA–TBP and its application to actinoid partitioning process. J. Nucl. Sci. Technol. 19, 326-33 (1982)View Article
    17.Jackson, P.E.: Analysis of oxalate in Bayer liquors: a comparison of ion chromatography and capillary electrophoresis. J. Chromatogr. A 693, 155-61 (1995)View Article
    18.Qafoku, O., Felmy, A.R.: Development of accurate chemical equilibrium models for oxalate species to high ionic strength in the system: Na–Ba–Ca–Mn–Sr–Cl–NO3–PO4–SO4–H2O at 25?°C. J. Solution Chem. 36, 81-5 (2007)View Article
    19.K?nigsberger, E., Eriksson, G., May, P.M., Hefter, G.: Comprehensive model of synthetic Bayer liquors. Part 1. Overview. Ind. Eng. Chem. Res. 44, 5805-814 (2005)View Article
    20.Pitzer, K.S.: Ion interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn, pp. 75-53. CRC Press, Boca Raton (1991)
    21.Reynolds, J.G., Carter, R., Felmy, A.R.: A Pitzer interaction model for the NaNO3–NaNO2–NaOH–H2O system from 0 to 100?°C. Ind. Eng. Chem. Res. 54, 3062-070 (2015)View Article
    22.Carter, R., Pierson, K.L., Reynolds, J.G.: Binary Pitzer model parameters for predicating the solubility of key electrolytes in Hanford waste. In: Proceedings of Waste Management 2014, Waste Management Symposia Inc., Tucson, Arizona (2014)
    23.Weber, C.F.: Thermodynamic Modeling of Savannah River Evaporators. ORNL/TM-2001/102. Oak Ridge National Laboratory, Oak Ridge (2001)View Article
    24.Weber, C.F., Beahm, E.C., Lee, D.D., Watson, J.S.: A solubility model for aqueous solutions containing sodium, fluoride, and phosphate ions. Ind. Eng. Chem. Res. 39, 518-26 (2000)View Article
    25.Weber, C.F.: Calculation of Pitzer parameters at high ionic strength. Ind. Eng. Chem. Res. 39, 4422-426 (2000)View Article
    26.Riddle, J.D., Lockwood, D.J., Irish, D.E.: Ion pair formation in NaNO3/D2O solutions: Raman and infrared spectra, partial molal volumes, conductance, and viscosity. Can. J. Chem. 50, 2951-962 (1972)View Article
    27.Harvie, C.E., Greenberg, J.P., Weare, J.H.: A chemical equilibrium algorithm for highly non-ideal multi-p
  • 作者单位:Jacob G. Reynolds (1)
    Robert Carter (2)

    1. Washington River Protection Solutions, LLC, P.O. Box 850, MSIN H6-04, Richland, WA, 99352, USA
    2. Energy Solutions, 2345 Stevens Dr. #240, Richland, WA, 99354, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Industrial Chemistry and Chemical Engineering
    Geochemistry
    Oceanography
    Inorganic Chemistry
    Condensed Matter
  • 出版者:Springer Netherlands
  • ISSN:1572-8927
文摘
Alkaline high-level nuclear wastes in the United States contain large inventories of sodium oxalate (Na2C2O4) immersed in Na+-, \( {\text{NO}}_{3}^{ - } \)- and OH?/sup>-bearing electrolyte solutions. Dissolution and precipitation of Na2C2O4 will likely influence the treatment of this waste. The Pitzer model has been widely used to model electrolyte solubility during high-level nuclear waste processing. The present study determines the anion–anion (θ) and ternary cation–anion–anion (ψ) Pitzer interaction parameters for oxalate Na2C2O4–NaNO3–H2O and Na2C2O4–NaOH–H2O systems by fitting the Pitzer model with Na2C2O4 solubility data in aqueous NaNO3 and NaOH solutions. The \( {\text{C}}_{2} {\text{O}}_{4}^{2 - } \)-span class="InlineEquation" id="IEq3">\( {\text{NO}}_{3}^{ - } \) and \( {\text{C}}_{2} {\text{O}}_{4}^{2 - } \)–OH?/sup> θ parameters were found to be 0.02369 and ?.005304, respectively. The Na-span class="InlineEquation" id="IEq5">\( {\text{C}}_{2} {\text{O}}_{4}^{2 - } \)-span class="InlineEquation" id="IEq6">\( {\text{NO}}_{3}^{ - } \) and Na-span class="InlineEquation" id="IEq7">\( {\text{C}}_{2} {\text{O}}_{4}^{2 - } \)–OH?/sup> ψ parameters were found to be 0.04069 and 0.017044, respectively. The solubility data could be modeled with temperature independent θ and ψ values over the experimental range investigated, which was 20-5?°C for the Na2C2O4–NaNO3–H2O system and 0-0?°C for the Na2C2O4–NaOH–H2O system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700