3D Robot Formations Path Planning with Fast Marching Square
详细信息    查看全文
  • 作者:David álvarez ; Javier V. Gómez…
  • 关键词:Robot formations motion planning ; Formation control ; Fast marching square
  • 刊名:Journal of Intelligent and Robotic Systems
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:80
  • 期:3-4
  • 页码:507-523
  • 全文大小:2,513 KB
  • 参考文献:1.Martin, M., Klupar, P., Kilberg, S., Winter, J.: TechSat 21 and revolutionizing space missions using microsatellites. In: AIAA/USU Conference on Small Satellites (2001)
    2.Dewan, A., Mahendran, A., Soni, N., Krishna, K.M.: Heterogeneous UGV-MAV exploration using integer programming. In: AIAA/USU Conference on Small Satellites on Intelligent Robots and Systems (2013)
    3.Hauert, S., Zufferey, J.C., Floreano, D.: Reverse-engineering of artificially evolved controllers for swarms of robots. In: IEEE Congress on Evolutionary Computation (2009)
    4.Acevedo, J.J., Arrue, B.C., Maza, I., Ollero, A.: Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. J. Intell. Robot. Syst. 70(1-), 329-45 (2013)CrossRef
    5.Likhachev, M., Keller, J., Kumar, V., Dobrokhodov, V., Jones, K., Wurz, J., Kaminer, I.: Planning for opportunistic surveillance with multiple robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5750-757. Tokyo (2013)
    6.Bouabdallah, S.: Design and Control of Quadrotors with Applicationto Autonomous Flying, Theses 3727. école polytechnique fédérale de Lausanne (2007)
    7.Hrabar, S.: Reactive obstacle avoidance for rotorcraft UAVs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4967-974. San Francisco (2011)
    8.Shen, S., Michael, N., Kumar, V.: 3D estimation and control for autonomous flight with constrained computation. In: IEEE International Conference of Robotics and Automation. Shanghai (2011)
    9.Hino, T.: Simple formation control scheme tolerant to communication failures for small unmanned air vehicles. In: International Congress of the Aeronautical Sciences. Nice (2010)
    10.Balch, T., Arkin, R.C.: Behaviour-based formation control for multi-robot teams. IEEE Trans. Robot. Autom. 14(6), 926-39 (1998)CrossRef
    11.Naffin, D., Sukhatme, G.: Negotiated formations. In: Proceedings of the International Conference on Intelligent Autonomous Systems, pp. 181-90. Amsterdam (2004)
    12.Fredslund, J., Matari, M.J.: A general algorithm for robot formations using local sensing and minimal communication. IEEE Trans. Robot. Autom. 18(5), 837-46 (2002)CrossRef
    13.Lemay, M, Michaud, F., Létourneau, D., Valin, J.-M.: Autonomous initialization of robot formations. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 3018-023. New Orleans (2004)
    14.Ogren, P., Egerstedt, M., Hu, X.: A control Lyapunov function approach to multiagent coordination. IEEE Trans. Robot. Autom. 18(5), 847-51 (2002)CrossRef
    15.Zhang, M., Shen, Y., Wang, Q., Wang, Y.: Dynamic artificial potential field based multi-robot formation control. In: IEEE Instrumentation and Measurement Technology Conference, pp. 1530-534. Austin (2010)
    16.Cao, Z., Xie, L., Zhang, B., Wang, S., Tan, M.: Formation constrained multi-robot system in unknown environments. Proceedings Conference on Robotics and Automation, vol. 1, pp. 735-40 (2003)
    17.Tan, K.H., Lewis, M.A.: Virtual structures for high-precision cooperative mobile robotic control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 132-39 (1996)
    18.Ren, W., Beard, R.W.: Decentralized scheme for spacecraft formation flying via the virtual structure approach. AIAA J. Guid. Control. Dyn. 1(1), 73-2 (2004)CrossRef
    19.Ahmad, A., Nascimento, T., Concei?ao, A.G.S., Moreira, A.P., Lima, P.: Perception-driven multi-robot formation control. In: IEEE International Conference on Robotics and Automation, pp. 1851-856. Karlsruhe (2013)
    20.Kanjanawanishkul, K., Zell, A.: A model-predictive approach to formation control of omnidirectional mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2771-776. Nice (2008)
    21.álvarez, D., Gómez, J.V., Garrido, S., Moreno, L.: 3D Robot formations planning with fast marching square. In: IEEE International Conference on Autonomous Robot Systems and Competitions. Espinho (2014)
    22.Yu, W., Chen, G., Cao, M.: Distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities. Syst. Control Lett. 59(9), 543-52 (2010)MATH MathSciNet CrossRef
    23.Garrido, S., Moreno, L., Lima, P.: Robot formation motion planning using fast marching. J. Robot. Auton. Syst. 59(9), 675-83 (2011)CrossRef
    24.álvarez, D., Lumbier, A., Gómez, J.V., Garrido, S., Moreno, L.: Precision grasp planning with Gifu hand III based on fast marching square. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4549-554. Tokyo (2013)
    25.Valero, A., Gómez, J.V., Garrido, S., Moreno, L.: The path to efficiency. IEEE Robot. Autom. Mag. 20(4), 111-20 (2013)CrossRef
    26.Gómez, J.V., Lumbier, A., Garrido, S., Moreno, L.: Planning Robot Formations with Fast Marching Square Including Uncertainty Conditions. J. Robot. Auton. Syst. 61(2), 137-52 (2013)CrossRef
    27.Sethian, J.
  • 作者单位:David álvarez (1)
    Javier V. Gómez (1)
    Santiago Garrido (1)
    Luis Moreno (1)

    1. Robotics Lab, Department of Systems and Automation, University Carlos III of Madrid, Leganés, 28911, Spain
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Electronic and Computer Engineering
    Artificial Intelligence and Robotics
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-0409
文摘
This work presents a path planning algorithm for 3D robot formations based on the standard Fast Marching Square (FM2) path planning method. This method is enlarged in order to apply it to robot formations motion planning. The algorithm is based on a leader-followers scheme, which means that the reference pose for the follower robots is defined by geometric equations that place the goal pose of each follower as a function of the leader’s pose. Besides, the Frenet-Serret frame is used to control the orientation of the formation. The algorithm presented allows the formation to adapt its shape so that the obstacles are avoided. Additionally, an approach to model mobile obstacles in a 3D environment is described. This model modifies the information used by the FM2 algorithm in favour of the robots to be able to avoid obstacles. The shape deformation scheme allows to easily change the behaviour of the formation. Finally, simulations are performed in different scenarios and a quantitative analysis of the results has been carried out. The tests show that the proposed shape deformation method, in combination with the FM2 path planner, is robust enough to manage autonomous movements through an indoor 3D environment. Keywords Robot formations motion planning Formation control Fast marching square

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700