Grasping numbers: evidence for automatic influence of numerical magnitude on grip aperture
详细信息    查看全文
  • 作者:Gal Namdar (1)
    Joseph Tzelgov (1) (2)
    Daniel Algom (3)
    Tzvi Ganel (1)
  • 关键词:Visually guided action ; Grasping ; Motor planning/programming ; Motor control ; Numerical cognition ; Automatic processing ; Selective attention
  • 刊名:Psychonomic Bulletin & Review
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:21
  • 期:3
  • 页码:830-835
  • 全文大小:
  • 参考文献:1. Algom, D., Dekel, A., & Pansky, A. (1996). The perception of number from the separability of the stimulus: The Stroop effect revisited. / Memory & Cognition, 24, 557-72. doi:10.3758/BF03201083 CrossRef
    2. Andres, M., Ostry, D. J., Nicol, F., & Paus, T. (2008). Time course of number magnitude interference during grasping. / Cortex, 44, 414-19. CrossRef
    3. Astafiev, S. V., Shulman, G. L., Stanley, C. M., Snyder, A. Z., Van Essen, D. C., & Corbetta, M. (2003). Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. / Journal of Neuroscience, 23, 4689-699.
    4. Badets, A., Andres, M., Di Luca, S., & Pesenti, M. (2007). Number magnitude potentiates action judgements. / Experimental Brain Research, 180, 525-34. doi:10.1007/s00221-007-0870-y CrossRef
    5. Bargh, J. A. (1989). Conditional automaticity: Varieties of automatic influence in social perception and cognition. / Unintended Thought, 3, 51-9.
    6. Ben Nathan, M., Shaki, S., Salti, M., & Algom, D. (2009). Numbers and space: Associations and dissociations. / Psychonomic Bulletin & Review, 16, 578-82. doi:10.3758/PBR.16.3.578 CrossRef
    7. Berch, D. B., Foley, E. J., Hill, R. J., & Ryan, P. M. (1999). Extracting parity and magnitude from Arabic numerals: Developmental changes in number processing and mental representation. / Journal of Experimental Child Psychology, 74, 286-08. CrossRef
    8. Bub, D. N., & Masson, M. E. J. (2010). Grasping beer mugs: On the dynamics of alignment effects induced by handled objects. / Journal of Experimental Psychology: Human Perception and Performance, 36, 341-58.
    9. Bub, D. N., Masson, M. E. J., & Lin, T. (2013). Features of planned hand actions influence identification of graspable objects. / Psychological Science, 24, 1269-276. doi:10.1177/0956797612472909 CrossRef
    10. Chiou, R. Y.-C., Wu, D. H., Tzeng, O. J.-L., Hung, D. L., & Chang, E. C. (2012). Relative size of numerical magnitude induces a size-contrast effect on the grip scaling of reach-to-grasp movements. / Cortex, 48, 1043-051. CrossRef
    11. Cohen Kadosh, R., Henik, A., Rubinsten, O., Mohr, H., Dori, H., van de Ven, V., & Linden, D. E. J. (2005). Are numbers special? The comparison systems of the human brain investigated by fMRI. / Neuropsychologia, 43, 1238-248. doi:10.1016/j.neuropsychologia.2004.12.017 CrossRef
    12. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. / Journal of Experimental Psychology: General, 122, 371-96. doi:10.1037/0096-3445.122.3.371 CrossRef
    13. Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. / Cognitive Brain Research, 12, 415-23. CrossRef
    14. Fischer, R., & Miller, J. (2008). Does the semantic activation of quantity representations influence motor parameters? / Experimental Brain Research, 189, 379-91. CrossRef
    15. Fitousi, D., Shaki, S., & Algom, D. (2009). The role of parity, physical size, and magnitude in numerical cognition: The SNARC effect revisited. / Attention, Perception, & Psychophysics, 71, 143-55. doi:10.3758/APP.71.1.143 CrossRef
    16. Frey, S. H., Vinton, D., Norlund, R., & Grafton, S. T. (2005). Cortical topography of human anterior intraparietal cortex active during visually guided grasping. / Cognitive Brain Research, 23, 397-05. CrossRef
    17. Ganel, T., Chajut, E., & Algom, D. (2008). Visual coding for action violates fundamental psychophysical principles. / Current Biology, 18, R599–R601. CrossRef
    18. Ganel, T., Freud, E., Chajut, E., & Algom, D. (2012). Accurate visuomotor control below the perceptual threshold of size discrimination. / PLoS ONE, 7, e36253. doi:10.1371/journal.pone.0036253 CrossRef
    19. Ganel, T., Tanzer, M., & Goodale, M. A. (2008). A double dissociation between action and perception in the context of visual illusions. / Psychological Science, 19, 221-25. CrossRef
    20. Ganor-Stern, D., Tzelgov, J., & Ellenbogen, R. (2007). Automaticity and two-digit numbers. / Journal of Experimental Psychology: Human Perception and Performance, 33, 483-96. doi:10.1037/0096-1523.33.2.483
    21. Glover, S. R., & Dixon, P. (2001). Dynamic illusion effects in a reaching task: Evidence for separate visual representations in the planning and control of reaching. / Journal of Experimental Psychology: Human Perception and Performance, 27, 560-72. doi:10.1037/0096-1523.27.3.560
    22. Glover, S., Rosenbaum, D. A., Graham, J., & Dixon, P. (2004). Grasping the meaning of words. / Experimental Brain Research, 154, 103-08. CrossRef
    23. G?bel, S. M., Johansen-Berg, H., Behrens, T., & Rushworth, M. F. S. (2004). Response-selection-related parietal activation during number comparison. / Journal of Cognitive Neuroscience, 16, 1536-551. doi:10.1162/0898929042568442 CrossRef
    24. Goldfarb, L., & Tzelgov, J. (2005). Is size perception based on monocular distance cues computed automatically? / Psychonomic Bulletin & Review, 12, 751-54. CrossRef
    25. Goodale, M. A. (2011). Transforming vision into action. / Vision Research, 51, 1567-587. CrossRef
    26. Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. / Memory & Cognition, 10, 389-95. doi:10.3758/BF03202431 CrossRef
    27. Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations principle. / Canadian Journal of Experimental Psychology, 63, 124-38. CrossRef
    28. Lammertyn, J., Notebaert, W., Gevers, W., & Fias, W. (2007). The size of the Simon effect depends on the nature of the relevant task. / Experimental Psychology, 54, 202-14. CrossRef
    29. Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: Numerical magnitude priming in object grasping. / Journal of Experimental Psychology: Human Perception and Performance, 33, 1400-409. doi:10.1037/0096-1523.33.6.1400
    30. Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. / Neuropsychologia, 46, 774-85. doi:10.1016/j.neuropsychologia.2007.10.005 CrossRef
    31. Moretto, G., & Pellegrino, G. (2008). Grasping numbers. / Experimental Brain Research, 188, 505-15. CrossRef
    32. Pansky, A., & Algom, D. (1999). Stroop and Garner effects in comparative judgments of numerals: The role of attention. / Journal of Experimental Psychology: Human Perception and Performance, 25, 39-8. doi:10.1037/0096-1523.25.1.39
    33. Pansky, A., & Algom, D. (2002). Comparative judgment of numerosity and numerical magnitude: Attention preempts automaticity. / Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 259-74. doi:10.1037/0278-7393.28.2.259
    34. Simon, O., Mangin, J.-F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. / Neuron, 33, 475-87. CrossRef
    35. Tzelgov, J. (1997). Specifying the relations between automaticity and consciousness: A theoretical note. / Consciousness and Cognition, 6, 441-51. doi:10.1006/ccog.1997.0303 CrossRef
    36. Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. / Trends in Cognitive Sciences, 7, 483-88. doi:10.1016/j.tics.2003.09.002 CrossRef
  • 作者单位:Gal Namdar (1)
    Joseph Tzelgov (1) (2)
    Daniel Algom (3)
    Tzvi Ganel (1)

    1. Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
    2. Department of Brain and Cognitive Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
    3. School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
  • ISSN:1531-5320
文摘
Previous research has shown that the fingers-aperture during grasp is affected by the numerical values of numbers embedded in the grasped objects: Numerically larger digits lead to larger grip apertures than do numerically smaller digits during the initial stages of the grasp. The relationship between numerical magnitude and visuomotor control has been taken to support the idea of a common underlying neural system mediating the processing of magnitude and the computation of object size for motor control. The purpose of the present study was to test whether the effect of magnitude on motor preparation is automatic. During grasping, we asked participants to attend to the colors of the digit while ignoring numerical magnitude. The results showed that numerical magnitude affected grip aperture during the initial stages of the grasp, even when magnitude information was irrelevant to the task at hand. These findings suggest that magnitude affects grasping preparation in an automatic fashion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700