Hydrolytic enzymes and their proteinaceous inhibitors in regulation of plant–pathogen interactions
详细信息    查看全文
  • 作者:L. G. Yarullina ; A. R. Akhatova ; R. I. Kasimova
  • 关键词:higher plants ; phytopathogens ; pectinases ; cellulases ; proteinases ; amylases ; hydrolase inhibitors ; induced plant resistance
  • 刊名:Russian Journal of Plant Physiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:63
  • 期:2
  • 页码:193-203
  • 全文大小:219 KB
  • 参考文献:1.Protsenko, M.A., Bulantseva, E.A., and Korableva, N.P., Polygalacturonase-inhibiting proteins in plant fleshy fruits during their ripening and infections, Russ. J. Plant Physiol., 2010, vol. 57, pp. 356–362.CrossRef
    2.Kudryavtseva, N.N., Sof’in, A.V., Revina, T.A., Gvozdeva, E.L., Ievleva, E.V., and Valueva, T.A., Secretion of proteolytic enzymes by three phytopathogenic microorganisms, Appl. Biochem. Microbiol., 2013, vol. 49, pp. 514–520.CrossRef
    3.Silva, T.M., Damasio, A.R., Maller, A., Michelin, M., Squina, F.M., Jorge, J.A., and Polizeli M. de L., Purification, partial characterization, and covalent immobilization- stabilization of an extracellular a-amylase from Aspergillus niveus, Folia Microbiol., 2013, vol. 58, pp. 495–502.
    4.Mosolov, V.V. and Valueva, T.A., Participation of proteolytic enzymes in the interaction of plants with phytopathogenic microorganisms, Biochemistry (Moscow), 2006, vol. 71, pp. 838–845.CrossRef
    5.Revina, T.A., Kladnitskaya, G.V., Gerasimova, N.G., Gvozdeva, E.L., and Valueva, T.A., Protein trypsin inhibitor from potato tubers, Biochemistry (Moscow), 2010, vol. 75, pp. 36–40.CrossRef
    6.Kalve, N.D., Lomate, P.R., and Hivrale, V.K., A proteinaceous thermo labile a-amylase inhibitor from Albizia lebbeck with inhibitory potential toward insect amylases, Arthropod Plant Interact., 2012, vol. 6, pp. 213–220.CrossRef
    7.Valencia-Jimenez, A., Arboleda, V., and Grossi de Se, M.F., Activity of a-amylase inhibitors from Phaseolus coccineus on digestive a-amylases of the coffee berry borer, J. Agric. Food Chem., 2008, vol. 56, pp. 2315–2320.CrossRef PubMed
    8.Gatehouse, J.A., Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects, Curr. Protein Pept. Sci., 2011, vol. 12, pp. 409–416.CrossRef PubMed
    9.Dunaevskii, Ya.E., Matveeva, A.R., Fatkhullina, G.N., Belyakova, G.A., Kolomiets, T.M., Kovalenko, E.D., and Belozerskii, M.A., Extracellular proteases of mycelial fungi as participants of pathogenic processes, Russ. J. Bioorg. Chem., 2008, vol. 34, pp. 286–289.CrossRef
    10.Protsenko, M.A., Buza, N.L., Krinitsina, A.A., Bulantseva, E.A., and Korableva, N.P., Polygalacturonase- inhibiting protein is a structural component of plant cell wall, Biochemistry (Moscow), 2008, vol. 73, pp. 1053–1062.CrossRef
    11.Arunachalam, C. and Asha, S., Pectinolytic enzyme–a review of new studies, Adv. Biotech. J. Online, 2010, vol. 9, pp. 1–5. http://​wwwadvancedbiote​chin/​online
    12.Van den Brink, J. and de Vries, R., Fungal enzyme sets for plant polysaccharide degradation, Appl. Microbiol. Biotechnol., 2011, vol. 91, pp. 1477–1492.CrossRef PubMed PubMedCentral
    13.Sinitsyna, O.A., Fedorova, E.A., Semenova, M.V., Gusanov, A.V., Sokolova, L.M., Bubnova, T.M., and Okunev, O.N., Isolation and characterization of extracellular pectin lyase from Penicillium canescens, Biochemistry (Moscow), 2007, vol. 72, pp. 565–571.CrossRef
    14.Federici, L., di Matteo, A., Fernandez-Recio, J., Tsernoglou, D., and Cervone, F., Polygalacturonase inhibiting proteins: players in plant innate immunity? Trends Plant Sci., 2006, vol. 11, pp. 65–70.CrossRef PubMed
    15.Niture, K., Comparative biochemical and structural characterizations of fungal polygalacturonases, Biologia, 2008, vol. 63, pp. 1–19.CrossRef
    16.Maulik, A., Ghosh, H., and Basu, S., Comparative study of protein–protein interaction observed in polygalacturonase- inhibiting proteins from Phaseolus vulgaris and Glycine max and polygalacturonase from Fusarium moniliforme, BMC Genomics, 2009, vol. 10, pp. 1–12.CrossRef
    17.Kars, I. and van Kan, J.A.L., Extracellular enzymes and metabolites involved in pathogenesis of Botrytis, in Botrytis: Biology, Pathology and Control, Elad, Y., Williamson, B., Tudzynski, P., and Delen, N., Eds., Dordrecht, Netherlands: Springer-Verlag, 2007, pp. 99–118.CrossRef
    18.Basaran, P., Ozcan, M., Denisov, Y., and Freeman, S., Elucidation of pectinolytic enzyme activities of a nonpathogenic watermelon pathogen mutant, Fusarium oxysporum f. sp. niveum m87, Aust. Plant Pathol., 2007, vol. 36, pp. 135–141.CrossRef
    19.Manjurul Md., Haque, Md. and Tsuyumu, S., Virulence, resistance to magainin II,and expression of pectate lyase are controlled by the PhoP-PhoQ two-component regulatory system responding to pH and magnesium in Erwinia chrysanthemi 3937, J. Gen. Plant Pathol., 2005, vol. 71, pp. 47–50.
    20.Payasi, A., Sanwal, R., and Sanwal, G.G., Microbial pectate lyases: characterization and enzymological properties, World J. Microbiol. Biotechnol., 2009, vol. 25, pp. 1–14.CrossRef
    21.Creze, C., Castang, S., Derivery, E., and Haser, R., The crystal structure of pectate lyase Pell from soft rot pathogen Erwinia chrysanthemi in complex with its substrate, J. Biol. Chem., 2008, vol. 283, pp. 18260–18268.CrossRef PubMed
    22.Mohidul, M., Vivek, K., and Hyun K., Baek, K., Production of a major stilbene phytoalexin, resveratrol in peanut (Arachis hypogaea) and peanut products: a mini review, Environ. Sci. Biotechnol., 2013, vol. 12, pp. 209–221.CrossRef
    23.Mosolov, V.V. and Valueva, T.A., Proteinase inhibitors and their function in plants: a review, Appl. Biochem. Microbiol., 2005, vol. 41, pp. 227–246.CrossRef
    24.Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, Vl.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, pp. 141–154.CrossRef
    25.Ferrari, S., Savatin, D.V., Sicilia, F., Gramegna, G., Cervone, F., and Lorenzo, G., Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development, Front. Plant Sci., 2013, vol. 4, no. 49, doi doi 10.3389/fpls.2013.00049
    26.Vu, B.V., Itoh, K., Nguyen, Q.B., Tosa, Y., and Nakayashiki, H., Cellulases belonging to glycoside hydrolase families 6 and 7 contribute to the virulence of Magnaporthe oryzae, Mol. Plant–Microbe Interact., 2012, vol. 25, pp. 1135–1141.CrossRef PubMed
    27.Zhang, J., Bruton, B.D., and Biles, C.L., Cell walldegrading enzymes of Didymella bryoniae in relation to fungal growth and virulence in cantaloupe fruit, Eur. J. Plant Pathol., 2014, vol. 139, pp. 749–761.CrossRef PubMed PubMedCentral
    28.Baldrian, P., Voriskova, J., Dobiasova, P., Merhautova, V., Lisa, L., and Valaskova, V., Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil, Plant Sci., 2011, vol. 338, pp. 111–125.
    29.Yan, S. and Wu, G., Secretory pathway of cellulase: a mini-review, Biotechnol. Biofuels, 2013, vol. 6, no. 177, doi 10.1186/1754-6834-6-177
    30.King, B.C., Waxman, K.D., Nenni, N.V., Walker, L.P., Bergstrom, G.C., and Gibson, D.M., Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi, Biotechnol. Biofuels, 2011, vol. 4, no. 4, doi 10.1186/1754-6834-4-4
    31.Ramanathan, S., Banupriya, S., and Abirami, D., Production and optimization of cellulose from Fusarium oxysporum by submerged fermentation, J. Sci. Ind. Res., 2010, vol. 69, pp. 454–459.
    32.Keinath, A.P., From native plants in central Europe to cultivated crops worldwide: the emergence of Didymella bryoniae as a cucurbit pathogen, HortScience, 2011, vol. 46, pp. 532–535.
    33.Zamani, M., Tehrani, A., Ahmadzadeh, M., Hosseininaveh, V., and Mostofy, Y., Control of Penicillium digitatum on orange fruit combining Pantoea agglomerans with hot sodium bicarbonate dipping, J. Plant Pathol., 2009, vol. 91, pp. 437–442.
    34.Ievleva, E.V., Revina, T.A., Kudryavtseva, N.N., Sof’in, A.V., and Valueva, T.A., Extracellular proteinases from the phytopathogenic fungus Fusarium culmorum, Appl. Biochem. Microbiol., 2006, vol. 42, pp. 298–303.CrossRef
    35.Geethu, C., Resna, A.K., and Nair, R., Characterization of major hydrolytic enzymes secreted by Pythium myriotylum, causative agent for soft rot disease, Antonie van Leeuwenhoek, 2013, vol. 104, pp. 749–757.CrossRef
    36.Huma, H. and Khalid, M.F., Plant protease inhibitors: a defense strategy in plants, Biotechnol. Mol. Biol. Rev., 2007, vol. 2, pp. 068–085.
    37.Chand, R., Kumar, M., Kushwaha, C., Shah, K., and Joshi, A., Role of melanin in release of extracellular enzymes and selection of aggressive isolates of Bipolaris sorokiniana in barley, Curr. Microbiol., 2014, vol. 69, pp. 202–211.CrossRef PubMed
    38.Feng, T., Nyffenegger, C., Hojrup, P., Vidal-Melgosa, S., Yan, K., Ulrik, Fangel, J., Meyer, A.S., and Kirpekar, F., Characterization of an extension-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1, Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 10 077–10 089.
    39.Ibragimov, R.I., Yarullina, L.G., Shpirnaya, I.A., Umarov, I.A., Tsvetkov, V.O., and Maksimov, I.V., Biochemical factors of plant resistance to pathogens, Sovrem. Naukoemkie Tekhnol., 2010, no. 4, pp. 46–48.
    40.Gomes, M.T.R., Oliva, M.L., Lopes, M.T.P., and Salas, C.E., Plant proteinases and inhibitors: an overview of biological function and pharmacological activity, Curr. Protein Pept. Sci., 2011, vol. 12, pp. 417–436.CrossRef PubMed
    41.Volpicella, M., Leoni, C., Costanza, A., de Leo, F., Gallerani, R., and Ceci, L.R., Cystatins, serpins and other families of protease inhibitors in plants, Curr. Protein Pept. Sci., 2011, vol. 12, pp. 386–398.CrossRef PubMed
    42.Carlile, A., Bindschedler, L., Bailey, A.M., Bowyer, P., Clarkson, J.M., and Cooper, R.M., Characterization of SNP1, a cell wall degrading trypsin, produced during infection by Stagonospora nodorum, Mol. Plant–Microbe Interact., 2000, vol. 13, pp. 538–550.PubMed
    43.Poloni, A., Pessi, I.S., Frazzon, P.G., and van der Sand, S.T., Morphology, physiology, and virulence of Bipolaris sorokiniana isolates, Curr. Microbiol., 2009, vol. 59, pp. 267–273.PubMed
    44.Olivieri, F., Zanetti, M.E., Oliva, C.R., Covarruibias, A., and Casalongue, C., Characterization of a novel extracellular serine protease of Fusarium eumartii and its action on pathogenesis related proteins, Eur. J. Plant Pathol., 2002, vol. 108, pp. 63–72.CrossRef
    45.Facincani, A.P., Moreira, L.M., Soares, M.R., Ferreira, C.B., Ferreira, R.M., Ferro, M.I.T., Ferro, J.A., Gozzo, F.C., and de Oliveira, J.C.F., Comparative proteomic analysis reveals that T3SS, Tfp, and xanthan gum are key factors in initial stages of Citrus sinensis infection by Xanthomonas citri subsp. citri, Funct. Integr. Genomics, 2014, vol. 14, pp. 205–217.CrossRef PubMed
    46.Abramovitch, R. and Martin, G., Strategies used by bacterial pathogens to suppress plant defenses, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 356–364.CrossRef PubMed
    47.Alfano, J.R. and Collmer, A., Type III secretion system effector proteins: double agents in bacterial disease and plant defense, Annu. Rev. Phytopathol., 2004, vol. 42, pp. 385–414.CrossRef PubMed
    48.Gazi, A., Sarris, P.F., Fadouloglou, V.E., Charova, S.N., Mathioudakis, N., Panopoulos, N.J., and Kokkinidis, M., Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains, BMC Microbiology, 2012, vol. 12, no. 188. doi 10.1186/1471-2180-12-188
    49.Kubrak, O.I. and Lushchak, V.I., Production and patterns of a-amylase from Bacillus sp. BKL40, Biotekhnologiya (Kiev), 2009, vol. 2, no. 1, pp. 69–79.
    50.Avdiyuk, E.V., Varbanets, L.D., Safronova, L.A., and Kharkevich, E.S., Purification and patterns of a-amylases from Aspergillus flavus var. oryzae and Bacillus subtilis, Biotekhnologiya (Kiev), 2012, vol. 5, no. 5, pp. 91–99.
    51.Gappa-Adachi, R., Yano, K., Takeuchi, S., Morita, Y., and Uematsu, S., Phytophthora blight of southern star (Oxypetalum caeruleum) caused by Phytophthora palmivora in Japan, J. Gen. Plant Pathol., 2012, vol. 78, pp. 39–42.CrossRef
    52.Morkunas, I., Formela, M., Marczak, L., Stobiecki, M., and Bednarski, W., The mobilization of defence mechanisms in the early stages of pea seed germination against Ascochyta pisi, Protoplasma, 2013, vol. 250, pp. 63–75.CrossRef PubMed PubMedCentral
    53.Avdiyuk, E.V. and Varbanets, L.D., a-Amylases from Aspergillus flavus var. oryzae and Bacillus subtilis: substrate specificity and resistance to some chemical active substances, Biotekhnologiya (Kiev), 2013, vol. 6, no. 3, pp. 36–45.
    54.Varbanets, L.D., Avdiyuk, E.V., and Borzova, N.V., Microbial a-amylases: isolation, purification and practical usage, Biotechnologia Acta, 2008, vol. 1, no. 2, pp. 39–51.
    55.Sailas, R.B., Smitha, V.N., Jisha, S., Pradeep, S., Sajith, S., Sreedevi, K.N., Unni, M.K., and Josh, S., A monograph on amylases from Bacillus spp., Adv. Biosci. Biotechnol., 2013, vol. 4, pp. 227–241.CrossRef
    56.Konarev, A.V., Proteinase inhibitors and resistance to Leptinotarsa decemlineata in potato, in Sovremennye sistemy zashchity i novye napravleniya v povyshenii ustoichivosti kartofelya k koloradskomu zhuku, ser. Geneticheskaya inzheneriya i ekologiya (Current Systems of Defense and New Concept in Increase of Resistance to Leptinotarsa decemlineata in Potato. Ser. Genetic Engineering and Ecology), 2000, vol. 1, pp. 35–40.
    57.Khadeeva, N.V., Kochieva, E.Z., Cherednichenko, M.Yu., Yakovleva, E.Yu., Sidoruk, K.V., Bogush, V.G., Dunaevskii, Ya.E., and Belozerskii, M.A., Use of buckwheat seed protease inhibitor gene for improvement of tobacco and potato plant resistance to biotic stress, Biochemistry (Moscow), 2009, vol. 74, pp. 260–267.CrossRef
    58.Abdeen, A., Virgos, A., Olivella, E., Villnueva, J., Aviles, X., Gabarra, R., and Prat, S., Multiple insect resistance in transgenic tomato plants overexpressing two families of plant proteinase inhibitors, Plant Mol. Biol., 2005, vol. 57, pp. 189–202.CrossRef PubMed
    59.Charity, J.A., Hughes, P., Anderson, M.A., Bittisnich, D.J., Whitecroßs, M., and Higgins, T.J.V., Pest and disease protection conferred by expression of barley ß-hordothionin and Nicotiana alata proteinase inhibitor genes in transgenic tobacco, Funct. Plant Biol., 2005, vol. 32, pp. 35–44.CrossRef
    60.Islamov, R.A. and Furusov, O.V., Bifunctional inhibitor of alpha-amylase/trypsin from wheat grain, Appl. Biochem. Microbiol., 2007, vol. 43, pp. 379–382.CrossRef
    61.Kandelinskaya, O.L., Grishchenko, E.R., Domash, V.I., and Topunov, A.F., Influence of epibrassinolide on the activity of lupine lectin-like proteins and proteinaseinhibitory systems under the sodium chloride salinization, Agrochemistry, 2008, no. 9, pp. 45–49.
    62.Ryan, C.A., Kuo, T., Pearce, G., and Kunkel, R., Variability in the concentration of three heat stable proteinase inhibitor proteins in potato tubers, Am. Potato J., 1976, vol. 53, no. 12, pp. 433–455.CrossRef
    63.Bode, W. and Huber, R., Structural basis of the endoproteinase–protein inhibitor interaction, Biochim. Biophys. Acta, 2000, vol. 1477, pp. 241–252.CrossRef PubMed
    64.Jamal, F., Pandey, P.K., Singh, D., and Khan, M.Y., Serine protease inhibitors in plants: nature’s arsenal crafted for insect predators, Phytochem. Rev., 2013, vol. 12, pp. 1–34.CrossRef
    65.Capocchi, A., Muccilli, V., Cunsolo, V., Saletti, R., Foti, S., and Fontanini, D., Heterotetrameric a-amylase inhibitor from emmer (Triticum dicoccon Schrank) seeds, Phytochemistry, 2013, vol. 88, pp. 6–14.CrossRef PubMed
    66.Zemke, K.J., Muller-Fahrnow, A., and Jany, K., The three-dimensional structure of the bifunctional proteinase K/a-amylase inhibitor from wheat (PKI3) at 2.5 Å resolution, FEBS Lett., 1991, vol. 397, pp. 240–242.CrossRef
    67.Nesterenko, M.V., Gvozdeva, E.L., Mitskevich, L.G., and Mosolov, V.V., Subtilisin-binding site localization in the molecule of bifunctional wheat inhibitor, Biokhimiya, 1989, vol. 54, pp. 838–845.
    68.Mehrabadi, M., Bandani, A.R., and Saadati, F., Inhibition of Sunn pest, Eurygaster integriceps, a-amylases by a-amylase inhibitors (T-aAI) from Triticale, J. Insect. Sci., 2010, vol. 10, pp. 1–13.
    69.Franco, L., Rigden, D., Melo, F., and Grossi de Sa M., Plant a-amylase inhibitors and their interaction with insect a-amylases, Eur. J. Biochem., 2002, vol. 269, pp. 397–412.CrossRef PubMed
    70.Svensson, B., Fukuda, K., Nielsen, P.K., and Bonsager, B.C., Proteinaceous a-amylase inhibitors, Biochim. Biophys. Acta, 2004, vol. 1696, pp. 145–156.CrossRef PubMed
    71.Alves, D.T., Vasconcelos, I.M., Oliveira, J.T., Farias, L.R., Dias, S.C., and Chiarello, M.D., Identification of four novel members of Kunitz-like a-amylase inhibitors family from Delonix regia with activity toward coleopteran insects, Pestic. Biochem. Phys., 2009, vol. 95, pp. 166–172.CrossRef
    72.Nitti, G., Orru, S., Bloch, C., Morhy, L., Marino, G., and Pucci, P., Amino acid sequence and disulphidebridge pattern of three gamma-thionins from Sorghum bicolor, Eur. J. Biochem., 1995, vol. 228, pp. 250–256.CrossRef PubMed
    73.Campos, F. and Richardson, M., The complete amino acid sequence of the bifunctional a-amylase/trypsin inhibitor from seeds of ragi (Indian finger millet, Eleusine coracana Gaertn.), FEBS Lett., 1983, vol. 152, pp. 300–304.CrossRef
    74.Iulek, J., Franco, O.L., Silva, M., Slivinski, C.T., Bloch, C., Rigden, D.J., and Grossi de Sa, M.F., Purification, biochemical characterization and partial primary structure of a new alpha-amylase inhibitor from Secale cereale (rye), Int. J. Biochem. Cell Biol., 2000, vol. 32, pp. 1195–1204.CrossRef PubMed
    75.Khaliluev, M.R. and Shpakovskii, G.V., Genetic engineering strategies for enhancing tomato resistance to fungal and bacterial pathogens, Russ. J. Plant Physiol., 2013, vol. 60, pp. 721–732.CrossRef
    76.Radhajeyalakshmi, R., Velazhahan, R., Balasubramanian, P., and Doraiswamy, S., Overexpression of thaumatin-like protein in transgenic tomato plants confers enhanced resistance to Alternaria solani, Arch. Phytopathol. Plant Protect., 2005, vol. 38, pp. 257–266.CrossRef
    77.Korneeva, I.V., Varlamova, N.V., Pushin, A.S., Firsov, A.P., Dolgov, S.V., Monakhos, G.F., Shalamzari, A., and Dzhalilov, F.S., Transgenic tomato plants expressing PR-5 protein genes demonstrated resistance against Phytophthora infestans and Xanthomonas vesicatoria, Acta Hortic., 2011, vol. 914, pp. 415–418.CrossRef
    78.Hwang, B.H., Bae, H., Lim, H.S., Kim, K.B., Kim, S.J., Im, M.H., Park, B.S., Kim, D.S., and Kim, J., Overexpression of polygalacturonase-inhibiting protein 2 (PGIP2) of Chinese cabbage (Brassica rapa ssp. pekinensis) increased resistance to the bacterial pathogen Pectobacterium carotovorum ssp. carotovorum, Plant Cell Tissue Organ Cult., 2010, vol. 103, pp. 293–305.CrossRef
    79.Golba, B., Treutter, D., and Kollar, A., Effects of apple (Malus domestica Borkh.) phenolic compounds on proteins and cell wall-degrading enzymes of Venturia inaequalis, Trees, 2011, vol. 26, pp. 131–139.CrossRef
    80.Sami, A.J. and Shakoori, A.R., Cellulase activity inhibition and growth retardation of associated bacterial strains of Aulacophora foviecollis by two glycosylated flavonoids isolated from Mangifera indica leaves, J. Med. Plants Res., 2011, vol. 5, pp. 184–190.
    81.Kont, R., Kurasin, M., Teugjas, H., and Valjamae, P., Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw, Biotechnol. Biofuels, 2013, vol. 6, pp. 1–14.CrossRef
    82.Domash, V.I., Sharpio, T.P., and Zabreiko, S.A., Plant inhibitors of proteolysis and possibility for their use in medicine, Vestn. Akad. Nauk Belorussii, Ser. Med. Nauk, 2008, no. 1, pp. 58–63.
    83.Mosolov, V.V. and Valueva, T.A., Inhibitors of proteolytic enzymes under abiotic stresses in plants (review), Appl. Biochem. Microbiol., 2011, vol. 47, pp. 453–459.CrossRef
    84.Yang, D.H., Hettenhausen, C., and Baldwin, I.T., BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata’s responses to herbivory, J. Exp. Bot., 2011, vol. 62, pp. 641–652.CrossRef PubMed PubMedCentral
    85.Vasyukova, N.I., Chalenko, G.I., Gerasimova, N.G., Valueva, T.A., and Ozeretskovskaya, O.L., Activation of elicitor defensive properties by systemic signal molecules during the interaction between potato and the late blight agent, Appl. Biochem. Microbiol., 2008, vol. 44, pp. 213–217.CrossRef
    86.Vasyukova, N.I. and Ozeretskovskaya, O.L., Induced plant resistance and salicylic acid: a review, Appl. Biochem. Microbiol., 2007, vol. 43, pp. 367–373.CrossRef
    87.Vasyukova, N.I. and Ozeretskovskaya, O.L., Jasmonate-dependent defense signaling in plant tissues, Russ. J. Plant Physiol., 2009, vol. 56, pp. 581–590.CrossRef
    88.Egger, B. and Koschier, E.H., Behavioural responses of Frankliniella occidentalis Pergande larvae to methyl jasmonate and cis-jasmone, J. Pest Sci., 2014, vol. 87, pp. 53–59.CrossRef
    89.Yakovleva, V.G., Egorova, A.M., and Tarchevsky, I.A., Proteomic analysis of the effect of methyl jasmonate on pea seedling roots, Dokl. Biochem. Biophys., 2013, vol. 449, pp. 90–93.CrossRef PubMed
  • 作者单位:L. G. Yarullina (1) (2)
    A. R. Akhatova (1)
    R. I. Kasimova (1)

    1. Institute of Biochemistry and Genetics, Ufa Research Center, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa, Bashkortastan, 450054, Russia
    2. Bashkir State University, ul. Zaki Validi 32, Ufa, Bashkortastan, 450074, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
    Plant Sciences
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3407
文摘
This review considers the main groups of hydrolytic enzymes associated with plant pathogens, as well as proteinaceous inhibitors of these enzymes, acting as the components of plant defense system. The role of hydrolases is described in the development of a pathological process in plant tissues. Significance of hydrolase inhibitors in the development of plant resistance to pathogens is analyzed. It is proposed that specific interactions in the “host plant–pathogen” system, involving hydrolytic enzymes and their proteinaceous inhibitors, depend on the nutritional specialization of fungi.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700