Are humus forms, mesofauna and microflora in subalpine forest soils sensitive to thermal conditions?
详细信息    查看全文
  • 作者:J. Ascher (1) judith.ascher@unifi.it
    G. Sartori (2)
    U. Graefe (3)
    B. Thornton (4)
    M. T. Ceccherini (1)
    G. Pietramellara (1)
    M. Egli (5)
  • 关键词:Subalpine forest soils &#8211 ; Humus forms &#8211 ; Climate &#8211 ; Microannelids &#8211 ; Microbial community &#8211 ; Microbial biomass
  • 刊名:Biology and Fertility of Soils
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:48
  • 期:6
  • 页码:709-725
  • 全文大小:590.9 KB
  • 参考文献:1. Ad-hoc-AG-Boden (2005) Bodenkundliche Kartieranleitung – 5 (KA5). Auflage. Hannover, Germany
    2. Agnelli A, Ascher J, Corti G, Ceccherini MT, Pietramellara G, Nannipieri P (2007) Purification and isotopic signatures (δ13C, δ15N, ∆14C) of soil extracellular DNA. Biol Fertil Soils 44:353–361
    3. Andreetta A, Macci C, Ceccherini MT, Cecchini G, Masciandaro G, Pietramellara G, Carnicelli S (2011) Microbial dynamics in Mediterranean Moder humus. Biol Fertil Soils. doi:10.1007/s00374-011-0622-9
    4. Ascher J, Ceccherini MT, Landi L, Mench M, Pietramellara G, Nannipieri P, Renella G (2009a) Composition, biomass and activity of microflora, and leaf yields and foliar elemental concentrations of lettuce, after in situ stabilization of an arsenic-contaminated soil. Appl Soil Ecol 41:351–359
    5. Ascher J, Ceccherini MT, Pantani OL, Agnelli A, Borgogni F, Guerri G, Nannipieri P, Pietramellara G (2009b) Sequential extraction and genetic fingerprinting of a forest soil metagenome. Appl Soil Ecol 42:176–181
    6. Ascher J, Ceccherini MT, Chroň谩kov谩 A, Jirout J, Borgogni F, Elhottov谩 D, Šimek M, Pietramellara G (2010) Evaluation of the denaturing gradient gel electrophoresis (DGGE)—apparatus as a parameter influencing soil microbial community fingerprinting. World J Microb Biot 26:1721–1726
    7. Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford
    8. Beylich A, Graefe U (2009) Investigations of annelids at soil monitoring sites in Northern Germany: reference ranges and time-series data. Soil Organisms 81:175–196
    9. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Physiol Pharm 37:911–917
    10. Bonifacio E, Falsone G, Petrillo M (2011) Humus forms, organic matter stocks and carbon fractions in forest soils of northwestern Italy. Biol Fertil Soils 47:555–566
    11. Bostr枚m B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98
    12. Budge K, Leifeld J, Egli M, Fuhrer J (2011) Soil microbial communities in (sub)alpine grasslands indicate a moderate shift towards new environmental conditions 11 years after warming. Soil Biol Biochem 43:1148–1154
    13. Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Chang 59:1–4
    14. Didden WAM, Fr眉nd HC, Graefe U (1997) Enchytraeids. In: Benckiser G (ed) Fauna in soil ecosystems. Recycling processes, nutrient fluxes, and agricultural production. Marcel Dekker, New York, pp 135–172
    15. Douterelo I, Goulder R, Lillie M (2010) Soil microbial community response to land management and depth, related to the degradation of organic matter in English wetlands: implications for the in situ preservation of archaeological remains. Appl Soil Ecol 44:219–227
    16. Dunger W, Fiedler HJ (1989) Methoden der Bodenbiologie. Gustav Fischer, Stuttgart
    17. Egli M, Mirabella A, Sartori G, Giaccai D, Zanelli R, Pl枚tze M (2007) Effect of slope aspect on transformation of clay minerals in Alpine soils. Clay Miner 42:375–401
    18. Egli M, Sartori G, Mirabella A, Favilli F, Giaccai D, Delbos E (2009) Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 149:124–136
    19. Egli M, Sartori G, Mirabella A, Giaccai D, Favilli F, Scherrer D, Krebs R, Delbos E (2010a) The influence of weathering and organic matter on heavy metals lability in silicatic, Alpine soils. Sci Total Environ 408:931–946
    20. Egli M, Sartori G, Mirabella A (2010b) The effects of exposure and climate on the weathering of late Pleistocene and Holocene Alpine soils. Geomorphology 114:466–482
    21. Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant–soil system. Annu Rev Environ Resour 30:75–115
    22. Favilli F, Egli M, Brandov谩 D, Ivy-Ochs S, Kubik PW, Cherubini P, Mirabella A, Sartori G, Giaccai D, Haeberli W (2009) Combined use of relative and absolute dating techniques for detecting signals of Alpine landscape evolution during the late Pleistocene and early Holocene. Geomorphology 112:48–66
    23. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176
    24. Frey SD, Drijber R, Smith H, Melillo JM (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907
    25. Galvan P, Ponge JF, Chersich S, Zanella A (2008) Humus components and soil biogenic structures in Norway spruce ecosystems. Soil Sci Soc Am J 72:548–557
    26. Graefe U, Beylich A (2003) Critical values of soil acidification for annelid species and the decomposer community. Newsl Enchytraeidae 8:51–55
    27. Graefe U, Beylich A (2006) Humus forms as tool for upscaling soil biodiversity data to landscape level? Mitteilgn Dtsch Bodenkundl Gesellsch 108:6–7
    28. Graefe U, Schmelz RM (1999) Indicator values, strategy types and life forms of terrestrial Enchytraeidae and other microannelids. Newsl Enchytraeidae 6:59–67
    29. Green CT, Scow KM (2000) Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeol J 8:126–141
    30. Hagedorn F, van Hees PAW, Handa IT, H盲ttenschwiler S (2008) Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Global Biogeochem Cy 22:GB2004
    31. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturant gradients. Appl Environ Microbiol 63:3233–3241
    32. Hirsch PR, Mauchline TH, Clark IM (2010) Culture-independent molecular techniques for soil microbial ecology. Soil Biol Biochem 42:878–887
    33. ISO 23611-3 (2007) Soil quality—sampling of soil invertebrates—Part 3: Sampling and soil extraction of enchytraeids. International Organization for Standardization; ISO 23611-3:2007, Geneva
    34. IUSS Working Group WRB (2006) World Reference Base for Soil Resources 2006. 2nd edition, World Soil Resources Reports No. 103, FAO (Food and Agriculture Organisation of the United Nations), Rome
    35. J盲nsch S, R枚mbke J, Didden W (2005) The use of enchytraeids in ecological soil classification and assessment concepts. Ecotox Environ Safe 62:266–277
    36. Jayasinghe BATD, Parkinson D (2008) Actinomycetes as antagonists of litter decomposer fungi. Appl Soil Ecol 38:109–118
    37. Jenny H (1941) Factors of soil formation. McGraw-Hill, New York
    38. Jenny H (1980) The soil resource. Springer, New York
    39. Lalanne A, Bardat J, Lalanne-Amara F, Gautrot T, Ponge JF (2008) Opposite responses of vascular plant and moss communities to changes in humus forms, as expressed by the Humus Index. J Veg Sci 19:645–652
    40. Leidlmair A (1996) Tirol-Atlas. Eine Landeskunde in Karten, Tiroler Landesregierung—Kulturreferat, Alpina Offset, Innsbruck
    41. Mannist枚 MK, Tiirola M, Haggblom MM (2007) Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol 59:452–465
    42. Margesin R, Jud M, Tscherko D, Schinner F (2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol 67:208–218
    43. Nakatsu CH (2007) Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci Soc Am J 71:562–571
    44. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670
    45. Nemergut DR, Costello EK, Meyer AF, Pescador MY, Weintraub MN, Schmidt SK (2005) Structure and function of alpine and arctic soil microbial communities. Res Microbiol 156:775–784
    46. Ning Y, Liu W, An Z (2006) Variation of soil ∂13C values in Xifeng loess-paleosol sequence and its paleoenvironmental implication. Chinese Sci Bull 51:1350–1354
    47. N眉bel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643
    48. Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610
    49. Paterson E, Osler G, Dawson LA, Gebbing T, Sim A, Ord B (2008) Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: independent of the presence of roots and mycorrhizal fungi. Soil Biol Biochem 40:1103–1113
    50. Ponge JF (2003) Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biol Biochem 35:935–945
    51. Ponge JF, Jabiol B, G茅gout JC (2011) Geology and climate conditions affect more humus forms than forest canopies at large scale in temperate forests. Geoderma 162:187–195
    52. Risk D, Kellman L, Moroni M (2009) Characterisation of spatial variability and patterns in tree and soil ∂13C at forested sites in eastern Canada. Isot Environ Healt S 45:220–230
    53. Salmon S, Artuso N, Frizzera L, Zampedri R (2008) Relationships between soil fauna communities and humus forms: response to forest dynamics and solar radiation. Soil Biol Biochem 40:1707–1715
    54. Sartori G, Mancabelli A (2009) Carta dei suoli del Trentino alla scala 1:250.000. Museo Tridentino di Scienze Naturali, Trento
    55. Sboarina C, Cescatti A (2004) Il clima del Trentino—Distribuzione spaziale delle principali variabili climatiche. Report 33, Centro di Ecologia Alpina Monte Bondone, Trento, Italy
    56. Schmelz RM, Collado R (2010) A guide to European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Organisms 82:1–176
    57. Soil Survey Staff (2010) Keys to soil taxonomy, 10th edn. USDA (United States Department of Agriculture), NRCS (National Resources Conservation Service), Washington, DC
    58. S酶rensen T (1948) A method of establishing groups of equal amplitude in a plant sociology based on similarity of species content and its applications to analysis of vegetation on Danish commons. Det Kong Danske Vidensk Selsk Biol Skr 5:1–34
    59. Stark S, Kyt枚viita MM, M盲nnist枚 MK, Neumann AB (2008) Soil microbial and microfaunal communities and organic matter quality in reindeer winter and summer ranges in Finnish subarctic mountain birch forests. Appl Soil Ecol 40:456–464
    60. Trigo C, Ball AS (1994) Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances? Microbiology 140:3145–3152
    61. van Vliet PCJ (2000) Enchytraeids. In: Sumner ME (ed) Handbook of soil science. CRC, Boca Raton, pp 70–77, Section C
    62. White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62
    63. Young IM, Crawford JW (2004) Interactions and self-organisation in the soil-microbe complex. Science 304:1634–1637
    64. Young IM, Blanchart E, Chenu C, Dangerfield M, Fragoso C, Grimaldi M, Ingram J, Monrozier LJ (1998) The interaction of soil biota and soil structure under global change. Glob Change Biol 4:703–712
    65. Zanella A, Jabiol B, Ponge JF, Sartori G, De Waal R, Van Delft B, Graefe U, Cools N, Katzensteiner K, Hager H, Englisch M, Brethes A, Broll G, Gobatl JM, Brun JJ, Milbert G, Kolb E, Wolf U, Frizzera L, Galvan P, Kolli R, Baritz R, Kemmerse R, Vacca A, Serra G, Banas D, Garlato A, Chersich S, Klimo E, Langohr R (2011a) European Humus Forms Reference Base. http://hal.archives-ouvertes.fr/docs/00/56/17/95/PDF/Humus_Forms_ERB_31_01_2011.pdf
    66. Zanella A, Jabiol B, Ponge JF, Sartori G, De Waal R, Van Delft B, Graefe U, Cools N, Katzensteiner K, Hager H, Englisch M (2011b) A European morpho-functional classification of humus forms. Geoderma. doi:10.1016/j.geoderma.2011.05.016
    67. Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481
  • 作者单位:1. Department of Plant, Soil and Environmental Science, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy2. Museo Tridentino di Scienze Naturali, Via Calepina 14, 38100 Trento, Italy3. IFAB Institut f眉r Angewandte Bodenbiologie GmbH, Sodenkamp 62, 22337 Hamburg, Germany4. The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH UK5. Department of Geography, University of Z眉rich, Winterthurerstrasse 190, 8057 Z眉rich, Switzerland
  • ISSN:1432-0789
文摘
This study focuses on the biological and morphological development of humus profiles in forested Italian Alpine soils as a function of climate. Humus form description, systematic investigation of microannelid communities and polyphasic biochemical fingerprinting of soil microbial communities (denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid analysis (PLFA)) were performed to compare sites differing in mean annual temperature due to different altitude and exposure. Although the soil biota showed complex responses, several differences in soil biological properties seem to be due to thermal differences. Although soil acidity also determines biological properties, it is not a state factor but rather influenced by them. The thickness of the organic layer and the acidification of the subjacent mineral horizon increased under cooler conditions (north-exposure; higher altitude), whereas the thickness of the A horizon inversely decreased. Species richness of microannelid assemblages was higher under warmer conditions (south-exposure; lower altitude) and the vertical distribution of microannelids shifted along the gradient to lower temperatures from predominant occurrence in the mineral soil to exclusive occurrence in the organic layer. Microbial biomass (total PLFA) was higher at the cooler sites; the prevalence of Gram-negative bacteria could be ascribed to their better adaptation to lower temperature, pH and nutrient contents. The δ13C signatures of the PLFA markers suggested a lower decomposition rate at the cooler sites, resulting in a lower respiratory loss and an accumulation of weakly decomposed organic material. DGGE data supported the PLFA results. Both parameters reflected the expected thermal sequence. This multidisciplinary case study provided indications of an association of climate, mesofauna and microbiota using the humus form as an overall link. More data are however needed and further investigations are encouraged.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700