Investigation of Second Harmonic Generation in Asymmetric Metal-Insulator-Metal Plasmonic Waveguides
详细信息    查看全文
  • 作者:Mohamadreza Soltani ; Mahmoud Nikoufard ; Massoud Dousti
  • 关键词:SHG ; Metal ; LiNbO3 ; metal plasmonic waveguides ; Asymmetric structure ; Crystal thickness
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:11
  • 期:2
  • 页码:689-695
  • 全文大小:751 KB
  • 参考文献:1.Sorger V, Oulton R, Ma R, Zhang X (2012) MRS Bull 37:728CrossRef
    2.Qasymeh M (2014) IEEE J Quantum Electron 50:327CrossRef
    3.Park J, Kim KY, Lee I, Lee B (2015) J Korean Phys Soc 66:929CrossRef
    4.Lee DJ, Yim HD, Kim YG, Jeong YB, Kim TY, Hwangbo CK, Jun YC, Park SG, Lee SG, Hoan O (2013) J Korean Phys Soc 63:2098CrossRef
    5.Wang YJ, Cai W, Yang M, Liu Z, Shang G (2015) J Korean Phys Soc 66:261CrossRef
    6.Ozbay E (2006) Science 311:189CrossRef
    7.Pleros N, Kriezis E, Vyrsokinos K (2011) Photonics J IEEE 3:296CrossRef
    8.Gagnon D, Balram K, White J, Wahl P, Brongersma M, Miller D (2012) Nanophotonics 1:9
    9.Goto T, Katagiri Y, Fukuda H, Shinojima H, Nakano Y, Kobayashi I, Mitsuoka Y (2004) Appl Phys Lett 84:852CrossRef
    10.Charbonneau R, Lahoud N, Mattiussi G, Berini P (2005) Opt Express 13:977CrossRef
    11.Dionne J, Sweatlock L, Atwater H, Polman A (2006) Phys Rev B 73:035407CrossRef
    12.Zia R, Selker M, Catrysse P, Brongersma M (2004) JOSA A 21:2442CrossRef
    13.Miyazaki H, Kurokawa Y (2006) Phys Rev Lett 96:097401CrossRef
    14.Kurokawaand Y, Miyazaki H (2007) Phys Rev B 75:035411CrossRef
    15.Veronis G, Fan S (2005) Appl Phys Lett 87:131102CrossRef
    16.Boyd R (2003) Nonlinear optics. Academic Press
    17.Cazzanelli M, Bianco F, Borga E, Pucker G, Ghulinyan M, Degoli E, Luppi E, Véniard V, Ossicini S, Modotto D (2012) Nat Mater 11:148CrossRef
    18.Levy J, Foster M, Gaeta A, Lipson M (2011) Opt Express 19:11415CrossRef
    19.Oliveira R, Lipson M, Matos C (2012) Presented at the CLEO: Science and Innovations (unpublished)
    20.Brongersma M, Kik P (2007) Surface plasmonnanophotonics. Springer
    21.Stockman M (2011) Opt Express 19:22029CrossRef
    22.Hasan S, Rockstuhl C, Pertsch T, Lederer F (2012) JOSA B 29:1606CrossRef
    23.Chen F (1969) J Appl Phys 40:3389CrossRef
    24.Yariv A (1978) IEEE J Quantum Electron 14(9):650CrossRef
    25.Günter P (1982) Phys Rep 93:199CrossRef
    26.Dittrich P, Montemezzani G, Bernasconi P, Günter P (1999) Opt Lett 24:1508CrossRef
    27.Marrakchi A, Huignard J, Günter P (1981) Appl Phys 24:131CrossRef
    28.Economou E (1969) Phys Rev 182:539CrossRef
    29.Prade B, Vinet JY, Mysyrowicz A (1991) Phys Rev B 44:13556CrossRef
  • 作者单位:Mohamadreza Soltani (1)
    Mahmoud Nikoufard (2)
    Massoud Dousti (3)

    1. Department of Electrical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
    2. Department of Electronics, Faculty of Electrical and Computer Engineering, University of Kashan, 87317-51167, Kashan, Iran
    3. Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
In this study, the second harmonic generation in metal-insulator-metal (MIM) plasmonic waveguides was investigated for both symmetric and asymmetric structures. Nonlinear processes such as second harmonic generation (SHG) are important for applications such as switching and wavelength conversion. In this study, it was shown that field enhancement in asymmetric metal-insulator-metal waveguides can result in large enhancement of SHG. Thus, a structure consisting of a MIM waveguide filled with lithium niobate and sandwiched between two same metals was first considered in this study. Thereafter, two different metals on both sides of the waveguide were used. It was shown in this study that this asymmetric device results in more than two orders of magnitude enhancement in SHG compared to a uniform slab of lithium niobate. For such structures, the field enhancement is due to the squeezing of the optical power from the wavelength-sized dielectric waveguide to the deep sub-wavelength MIM waveguide. So, the novelty of this paper is proposing a metal-LiNbO3-metal nanostructure with different top and bottom metals as plasmonic waveguides. Two different metals, gold and silver, are used as the metals of plasmonic waveguides, and the SHG is investigated in different structures. The interaction between interfering surface plasmonic polariton modes is studied. It is found that compared to the conventional symmetric metal-insulator-metal plasmonic waveguides, the asymmetric structure with different metals, silver-LiNbO3-gold, has higher SHG and longer propagation distance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700